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FOREWORD

A. Background

It has been some years now since the publication of something comparable

to the present work concerning the interaction of the nuclear electromagnetic

pulse (EHP) with complex systems. The most recent document of this kind is

Electromaguetic Pulse Handbook for Missiles and Aircraft in Flight, EMP

Interaction 1-1, September 1972; it was several years in the making, and theI

present document likewise was a lengthy undertaking.

-Recent years have witnessed some considerable effort and associated

advances in the state of the art of EMP interaction modeling. This develop-

ment has been spurred by experimental observations of the EI4P response

characteristics of complex systems and by analytical and computational

advances concerning the solution of appropriate types of electromagnetic
boundary-value problems. Related to these advances, but extending beyond

them in significance, are the fundamental insights which have been developed

concerning the general properties of the EMP response of complex systems;j

these insights have led to ways of reducing somewhat the complexity of the

interaction problem by decomposing it in certain "natural" ways into smaller

subproblems and subresponses, each of these smaller entities being somewhat

simpler than the total interaction problem and associated complex response.

There has also been a significant increase in the number of researchers,

engineers and system designers involved in applying EMP interaction models

developed mainly by theorists to military systems. These models are usually

only applicable to highly idealized problems and/or may be described by veryI

complicated mathematics not easily used to solve day-to-day practical problems.

Consequently, a gap has appeared between the theoretical models and the practical

applications. This document is meant to help bridge this gap.

B. Appl~icability

(I In organizing and compiling a work of this nature it is necessary to
determine for whom this work is constructed and how such persons are to use it.



This .X :'*ment is intended to be used by engineers responsible for EMP

hardening and testing of real military systems. Such is the fundamental
purpose of all the EMP interaction research: to develop better information

and techniques for ultimate use in making better (F.M hard) systems.

The rationale for studying the problem of EMP interaction with a system

is to try to understand and quantify the characteristics of the penetrating

EMP at the subsystem levels. This information when coupled with test data

results in an insight into how much the EMP energy may have to be reduced so

as to preclude functional upset or damage~. The application of data, formulas,

etc. from this document to a system can aid the analyst in making preliminary

order-of-magnitude estimates of responses at a point in a s'~stem but does not

in itself result in predictions for use in determining system hardening

requirements. However, when used with high-quality data resulting from EMP

testing a measure of the degree of hardening and hardening approaches
necessary can be obtained. It is important to stress at this point that in4

designing and/or assessing the EMP hardness of a system high-quality system-

level test data are absolutely indispensable, which are not contained in this

document. It is also important to point out that this volume does not address

the reliability/confidence error intervals (which are usually quite large, forI

example, a factor of 20 for 90/90 interval [1]) that one encounters in making

an assessment of aircraft survivability to EMP. The error estimates presented

in Chap. 1.6 and Sec. 3.2.5 of Chap. 3.2 are those that arise from physical

modeling, mathematical approximation and laboratory scale-model measurements.

They are generally small in comparison with the reliability/confidence error

intervals.

The reader may ask: "How can something as complicated as electromagnetic

theory ever be used by a multitude of engineers to design anything?" ToI

answer this question one must first observe that there is not much choice !.nI
the matter. Design means to take some body of knowledge and apply it to
making something with desired performance characteristics. EMP implies electro-

magnetics, and the distilled statement of electromagnetic phenomena, as we best

understand it, is electromagnetic theory. One can always question whether a

particular form of the description of an electromagnetic phenomenon is the best

possible description or is optimally communicable to neophytes in electromagnetic

iv



theory. Nevertheless, any description adopted must be at least approximat~ely

correct (i.e., in agreement with experimental fact). This rules out attempts

at oversimplification; there are some concepts which will have to be learned

in order to be able to effectively apply electromagnetic theory to EM? system

interaction problems.

A secondary use of the document is 'for the electromagnetic theory community.

In the process of'organizing and writing such a work one gets a better picture

of the state of the art and deficiences become more apparent. This in turn

can serve as a partial guide for future research. It must be emphasized,
however, that even though the electromagnetic theory research community is I
of necessity the group providing the basic information for this volume, this

work is not intended primarily for their use; its intended use is for the

applicators. This does not necessarily mean the applicators at their current

state of skills and knowledge, but the applicators raised to some basic level

of required electromagnetic knowledge for the applications problem.

C. Technical Concept

In constructing this kind of work summarizing the state of the art of

EMP interaction modeling, one might just list all the physical quantitiesI
and topics and have brief sections concerning each. However, these things

are not unrelated to each other; one can make use of these relations in

order to create a more coherent whole. This document is thus organized in

some sense from the top down instead of from the bottom up. A consistent

overall structure and notation has been created and the various pieces have

been selected to fit into the overall concept.

This work is divided into three parts. The first part, Principles

and Techniques, concerns general concepts and calculational procedures from

electromagnetic theory relevant to EMP interaction. This ýont ains a discussion

of the concept of electromagnetic topology which is used to divide complexI
systems into somewhat natural smaller parts in an ordered wa-y. This concept

is fundamental to the organization and understanding of this work and is

expected to lead to furth3r insights and computational techniques [2- 8].

Of course there are many other concepts and techniques which play important
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roles and which are discussed in this part. The reader might consult a recent

reviw pper[9] toput these in perspective including some concepts of potential

future significance.

The second part, Formulas and Data, considers the information concerning

the pieces of the system. The organization of this part is based on the system

topology, specifically the hierarchical topology which divides the system into

layers. Each layer is further divided into three ordered parts: coupling,

propagation, and penetration. Within each category the various individual

(or canonical) types of boundary-value problems are considered. As one might

expect, the bulk of the material is contained in this section.

Having considered, first, the general concepts and techniques for EMI'

9 interaction and, second, the specific information concerning the pieces, we

come to the third part, System Applications. This part attempts to illustrate

the use of the previous parts in analyzing the EMI' interaction with complex

systems. Hypothetical system examples are chosen to illustrate the topological

decomposition of the problem for selected signal paths, and the subsequent

approximate calculation of the internal signals.

As appropriate to any large task this was a cooperative one involvingI
many individuals and organizations. AFWL personnel were concerned with the *

overall technical organization and contractual adminstration of the effort.

This was accomplished by a set of memos termed HIH (Eli? Interaction Handbook)

memos in three parts [10- 12] which addressed outlines, notations, summaries of

particular problems, etc. Particular thanks are given to MSgt. Harris Goodwin

of AFW`L for his efficient administration of this effort.

D. Future Evolution

While in our opinion some significant advances are reflected in this EMP
interaction document, the present work should not be regarded as definitive.
As was expected, the process of producing this document revealed various defi-

ciencies to the participants. We believe that with time additional improvements

will become apparent to us and to you, the user. With proper aging, as in the

case of good wine, we will be able to form mature judgmints concerning an
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improved version of this volume. Presumably such an improved version will i
involve generalizations and simplifications of the basic concepts and
techniques as well as more specific data and examples. When the technology

allows for significant such improvements, a new version of this work is

called for.

Air Force Weapons Laboratory C.E. BAUM
Albuquerque, New Mexico J.P. CASTILLO

September, 1979 J.H. DARRAl
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A NOTE FROM THE EDITOR

This document is the product of a project undertaken by the Air Farce

Wetpons Laboratory to compile a comprehensive, up-to-date, standard reference

on EMP interaction. While this documentation should be useful to the entire

community of EM? research workers, it is specifically aimed at providing in

one volume the best currently-available technical data to engineers who are

engaged in hardening military aircraft, missiles, and satellite communications

systems against EMP penetration. To ensure accurate and expert coverage of

every topic in EMP interaction, the contributors to this volume have been

selected from among the nation's foremost EMP specialists who have been

actively participating in EMP interaction analysis and experiment.

The body of technical data collected in this do-.ument is largely drawn

from results obtained under AFWL-sponsored EMP research efforts directed by

John Darrah, Carl Baum and Phil Castillo. These results have appeared in

the AFW EMP note series and in various AFWL technical reports. However,

many of the results presented here were worked out during the making of this
document and have never befoz'. appeared elsewhere.

During the last three yeats I worked very closely with Phil Castillo

and H.A. Goodwin of AFWL on every aspect of the project. They had given me

continued encouragement and advice, and helped overcome all the difficult

problems that stood in the way. Their unstinting assistance and unabated

interest in the project were essential to its completion. Carl Baum of AFWL

was very much involved in the technical aspect of the project. He had contin-

uously and generously given me commeuts and ideas to improve the content of

the document. The entire technical staff of Dikewood, Santa Monica, no. only

has contributed a large amount of material to this document, but also proofread

the typescript. In particular, Kendall Casey and F.C. Yang helped me rewrite

Hi and integrate many sections of the document. Ed Vance of SRI, Clay Taylor of

the Mississippi State University, and several members of the technical staff

of RDA have made numerous valuable suggestions regarding the suitability and
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accuracy of the material in the document. Needless to say, the contributions
from the twenty-four authors are the building blocks of the project. Their

efforts and cooperation have made this document possible. Finally, my sincere
appreciation goes to Diane DiFrancc for her patience, assistance and skills

in the preparation of the entire typescript.

Dikewood Industries, Inc. K.S.H. LEE
Santa Monica, California

September, 1979
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SYMBOLS AND NOTATION

Symbol Modifiers

In this handbook certain standard modifiers are used in conjunction

with the symbols representing various quantities. These modifiers and

thei&r functions are listed below.

Modifying Function Symbol Modifier
per unit length ' (prime as superscript)

srae(from volume quantity) IS (subscript)

source (s) (superscript)
incident (i) (superscript)I
*diffracted (d) (superscript)

radiated (r) (superscript)

scattered (sc) (superscript)

reflected (re) (superscript)
open circuit oc (subscript)

short circuit sc (subscript)

complex frequency domain - (directly above in highest
position)

three-space vector + (directly above)

three-space dyad or-+* (directly above)

total t (subscript)*

transfer T (subscript)

electric e (or absent) (subscript)

magnetic M (subscript)

K.equivalent eq (subscript)

effective ef (subscript)

[1Superscripts may also be enclosed in parentheses if there exists the possi-
bility of confusion with an exponent. It should also be noted that the tilde

()denoting a quantity in the frequency domain may be omitted if the quantity

is expressed explicitly as a function of frequency.

In the following list of symbols are given the complete forms of the symbols

used, their meanings, and abbreviated or alternate forms of these symbols.
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CHAPTER 1.1

INTRODUCTION

The interaction of the nuclear electromagnetic pulse (EMP) with a

large aeronautical or communication system is not limited to coupling

with the system's external structure. EMP energy can penetrate through

the system's outer surface, propagate in its interior or along cables,

and finally appear as electric currents and voltages at the sensitive

components of electronic subsystems. The goal of EMP hardness engineering

is to suppress these currents and voltages to levels below the components'

damage and upset thresholds. The primary objective of this document is

to provide quantAL.Lve data, both analytical and experimental, on EMP

interaction (wHich comprises coupling, propagation and penetration) for

typical system geometries, for use in system hardness design and imple-

mentation.

The material of this document is organized in three parts. Part 1

presents the fundamental concepts of EM interaction and the methods of
its formulation and analysis. The general process of EMP penetration into

a large system is generically viewed as one of EMP energy transfer across

successive substrata (intersurfaces)of a layered topological model. The

outermost surface of the model is the system's external skin; the innermost

surface consists of the shields of internal electrical cables. The crossing

of each surface can be quantified by a transfer function. Each transfer

function is to a laroe extent dependent on the local surface geometry and

can be determined by solving an appropriate boundary-value problem in

electromagnetic theory. The analytical methods for formulating and solving

these electromagnetic boundary-value problems are described in detail.

Part 2 presents the analytical formulas as well as numerical and

experimental data on EMP coupling, propagation and penetration. These

formulas and data are organized according to the surfaces of the topo-

logical model to which they apply. Those pertaining to the outermost

surface of the model describe the EN? interaction with the external

structures of aeronautical and communication systems. Those pertaining

[I - 1



to the intermediate surfaces describe the excitation of wire-like

conductors and cavities lying behind these surfaces. Those pertaining

to the innermost surfacc describe the penetration of cable shields and

the excitation of shielded or unshielded wires.

Part 3 presents a number of system examples to demonstrate the

application of the formulas and data in Part 2. These examples are

designed to illustrate typical EMP interactions with aircraft, missiles,

satellites and ground communication facilities. Engineering techniques

for hardening these systems are discussed. Finally, the errors in the

calculations of the system examples are described.

K 1.1.1 HISTORY OF EMP

There are a number of reasons that make it difficult to compile

evan a brief history of EMP. Among these are the following: (1) much

of the early work was never written down or documented in readily available

sources; (2) EMP studies were carried out independently by persons and

organizations (AEC, AFWL, DASA, etc.) in a number of locations both within

the U.S. and overseas (e.g., U.K., U.S.S.R.); (3) much of the work wasI
classified, making open literature surveys somewhat incomplete and
possibly misleading; and (4) scientists and engineers were busy trying

to solve technical problems rather than recording historical details.

Thus, the brief history presented here may contain errors or have omitted

important contributions by certain groups or individuals, but all in all4

is factual.

A partial list of events important to the history of EMP is given

in table 1. Th2 list includes nuclear test information and the first

interests in system vulnerability and EMP simulation issues. The events

2 are listed in chronological order to show-the historical (although not
necessarily the most logical) development.

1.1.1.1 Discovery of EMP

It is reported that Fermi realized that any nuclear explosion weuld

create electromagnetic fields. The exact mechanisms that he had in mind

2



TABLE 1. IMPORTANT EVENTS IN THE HISTORY OF EMP

1945 TRINITY EVENT; electronic equipment shielded reportedly

because of Fermi's expectations of EM signals from a

nuclear burst

1951- First deliberate EMP observations made by Shuster, Cowan

1952 and Reines

1952- First British atomic tests; instrumentation failures

1953 attributed to "radioflash"

1954 Garwin of LASL proposes prompt gamma-produced Compton

currents as primary sources of EMP

1.957 Bethe makes estimate of high-altitude EMP signals using

electric dipole model (early-time peak incorrect)

1957 Haas makes magnetic field measurements for PLUMBBOB

test series (interest in EMP possibly setting off

magnetic mines)

1958 Joint British/U.S. meeting begins discussions of system

EMP vulnerability and hardness issues

1958 Kompaneets (USSR) publishes open literature paper on

EMP from atomic explosion

1959 Pomham and Taylor of the U.K. present a theory of

"radioflash"

1959 First interest in EMP coupling to underground cables of

Minuteman missile

1962 FISHBOWL high-altitude tests; EMP measurements driven off

scale; first indications of the magnitude of the high-

altitude EMP signal

1962 SMALL BOY ground burst EMP test

1962 Karzas and Latter publish two open literature papers on

using EMP signals for detections of nuclear tests; bomb

case EMP and hydromagnetic EMP considered
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TABLE 1. IMPORTANT EVENTS IN THE HISTORY OF EMP (Cont'd)

1963 Open literature calls for EMP hardening of military systems

begin to appear

1963- First EMP system tests carried out by Air Force Weapons

1964 Laboratory (AFWL)

1963- Longmire gives a series of EMP lectures at AFWL; presents

1964 detailed theory of ground burst EMP and shows that the

peak of the high-altitude EMP signals is explained by
magnetic field turning (magnetic dipolp signal)

1964 First note in the LASL/AFWL EMP notes series published

1965 Karzas and Latter publish first open literature paper

giving high-frequency approximation for the high-

altitude magnetic dipole signal

1967 Construction of ALECS as the first guided-wave simulator

is completed for EM? simulation on missiles

1967 AJAX underground nuclear test

1969 Close-in EMP mechanisms recognized and evaluated by

Graham and Schaefer

1970 EM4P underground test feasibility recognized and preliminary

design presented by Schaefer

1973 First joint nuclear EMP meeting at AFWL

1974 MING BLADE underground EMP test for confirmation of near

surface burst EMP models

1975 DINING CAR underground EMP test as the first system

hardware EMP test

1975 MIGHTY EPIC underground EMP test

1978 Special joint issue on the nuclear EMP in IEEE Trans-

actions on Antennas and Propagation and also on

Electromagnetic Compatibility

1978 Nuclear EMP meeting in Albuquerque under IEEE sponsorship
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were apparently not recorded, but electromagnetic shielding techniques
were applied to the various istruments used on the TRINITY event in 1945.

The first deliberate EMP measurements were apparently made in 1951 through

1952. The goal was to obtain diagnostic information describing weapon
output. Early U.S. tests also reportedly often used the EMP signal to

trigger oscilloscopes and other recording equipment.

Standard shielding practices used by U.S. experimentero apparently

kept EMP signals from interfering with diagnostics on the early nuclear
Lasts. The British were less fortunate, however. In the first British

atomic tests in 1952 through 1953, a number of instrumentation failures

occurred, apparently due to EMP and the absence of any shielding. Thus,

the British developed an early interest in "radioflash" (the British label

for EMP).

1.1.1.2 Early Activities

The fact that nuclear explosions generate electromagnetic signals was

experimentally well known by the mid-1950's when theoretical explanations
of the effect began to appear. In 1954 Garvin of Los Alamos correctly

proposed that the Compton current produced by prompt gamma radiation was

a major source term for Maxwell's equations, while in 1958 Kompaneets [1]
of the U.S.S.R. published one of the first papers in open literature on E".

Also, in 1959 Pomham and Taylor of the U.K. presented a paper entitled "A

Theory of Radioflash" [2].

The early theories were often incomplete and sometimes incorrect.1

Emphasis was placed on ground bursts or low-altittide explosions. Much of

the interest was in nearby (but outside the source region) diagnostic

measurements or long-range detection and observation of foreign tests.
VLF and other low-frequency effects were of particular interest, since good

quality high-frequency EMP measurements had not been made in the early tests.

The first glimmerings of the strategic and tactical importance of EMP

effects began to appear about 1957 when Haas made a series of magnetic field

measurements during the PLUMBBOB test series. One goal of these measurements
was to determine if EMP could set off nearby buried magnetic mines. In 1958

5
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discussions between the U.K. and the U.S. took place regarding the EMP

vulnerability and hardening of military systems (perhaps motivated by

British test instrumentation problems), and in 1959 people began to

worry about EMP coupling to the silos and buried cables of the Minute-

man system.

Both experimental and theoretical work continued to be carried out

at Los Alamos during this period, notably by Partridge, Suydam [3,41 and I
Malik. Some interest in high-altitude EMP began to appear in 1957 when

Bathe made some estimates of the high-altitude signal using an electric

dipole model. Unfortunately, this model is incorrect for the large,

early-time peak and, as a result, a number of measurements attempted

during the 1962 high-altitude test series were driven off-scale.

In 1962 a number of EMP measurements were attempted at the SMALL BOY

nuclear test in Nevada. The goal was to obtain data on the close-in EMP

environment of a ground burst. Unfortunately, many of the attempted

measurements were unsuccessful due to instrumentation and other problems.

The somewhat surprising results of the high-altitude test series,
combined with an atmospheric test ban, created a great deal of interest
in EMP in the early 1960's. Karzas and Latter published two papers [5,6]

on EMP theory in the open literature in 1962, their investigations being

at least partially aimed at detection of nuclear test ban violations. In

1963 through 1964 Longmire gave a series of lectures at AFWL which presented

a fairly detailed theory of source region surface-burst EMP and showed that

electron turning effects due to the earth's magnetic field would produce

the large early-time signals from high-altitude EMP seen in the 1962 test
series. This "high-frequency approximation" was first presented in the
open literature by Karzas and Latter in 1965 [7]. Significant theoretical

work and computer code development were also carried out during this period

at AFWL and in the U.K. Also, 1963 through 1964 apparently marked the

beginning of EMP testing of military systems when Henderson, Graham, and

Cikotas of AFWL first used a distribution of loops, a fast switch, and a
large capacitor bank to carry out EMP tests.

6
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Since the mid-1960's, both interest in and knowledge of EMP phenomena

have greatly expanded, and an adequate history of this period is beyond

the scope of this brief discussion. As a result of numerous efforts over

this time period, there now exist a wide variety of simple analytical

models and very complex computer codes used for calculating EMP environ-
ment. A number of EMP simulators have been built and simulation tests

carried out. Interests in system vulnerabilities have also expanded

from missiles to aircraft, satellites, and communication systems.

A good idea of present EMP interests can be gained by examining

the recent special joint issue of two IEEE journals on the Nuclear
Electromagnetic Pulse-[8].

1.1.1.3 Sensor Development

After the SMALL BOY test in 1962 it was apparent that instrumentation

for measuring the EMP physical parameters was inadequate, especially in

the nuclear source region. The conventional sensors, which convert

electric fields, magnetic fields, current densities, etc. to analog

electrical signals on data cables and circuit elements, had fundamental

physics problems in that their response in EMP source regions was unknown,

and hence they were not designed to operate with acceptable and known

accuracy. Problems associated with Comptom (source) current density,
nonlinear and time-changing air/soil conductivity, and other nuclear1
radiation effects were not familiar to antenna designers. These problems

had to be solved if any experimental progress was to be made concerning

the EMP source as well as the EMP interaction with objects in such source

regions.

As a part of the nuclear test readiness program AFWL, with DASA

funding, initiated a sensor development effort for source-region applica-

tions. Design concepts were developed based on the physical processes

in EMP source regions (described by Baum in the early Sensor and Simula-]I

tion Notes) and prototype sensors were built primarily by EG & G with the

early E-field sensors being built by SRI. These first models were fielded

7



aT

on the AJAX underground nuclear test in 1967 and several subsequent

EMP experiments. Also during this period some air conductivity

measurements were made on underground nuclear tests (by Baran, Baum

and Ekman) using X-band double-interferometer techniques on irradiated

air in a rectangular waveguide.

With the growth of EMP testing and the concomitant design of EMP

simulators, accurate broadband sensors were needed for measuring both

simulator performance and various response parameters of the system

under Lest. For this application several designs have evolved which

have found widespread use in both American and European agencies.

Both the source-region and source-free-region sensors are reviewed

in a recent paper in the special joint issue on the Nuclear Electromagnetic

Pulse authored by the principal contributors to this technology [9].

1.1.:.4 Simulator Development

From an EKP interaction viewpoint a military system such as a

missile, aircraft, communication center, etc. is extremely complex,
implying a low confidence in the results of an EMP interaction analysis

as it affects the many possible electronic vulnerabilities. It was

therefore apparent that a test capability was required. To perform

these tests on any extensive basis required special test facilities

producing EMP-like environments. This led to the need for what are

referred to as EMP simulators.

There are two fundamental points to be considered in deciding if

something is an EMP simulator (in the strict sense) or not: the accuracy

of the form of the fields in the absence of the test object (spatial,

temporal, frequency content, etc.), and an acceptably small interaction

of the simulator itself with the test object (thereby changing the response

characteristics of the test object [10]). The beginning of EMP simulation

is related to the quantification of both of these points with designs
accounting for them.

While some preliminary tests of military equipment were begun in

1963 through 1964 on some computer equipment and later on missiles, the

8



first EMP simulator in the strict sense was ALECS. This was first proposed
-. I by Partridge [ill] as a three-plate parallel-plate transmission line for

testing EMP instrumentation. This facility was changed (after construction

as a three-plate facility) into a two-plate facility for testing missiles.

The latter was completed in 1967 using calculations of Baum [12,13] and
r was intended to simulate a threat-like plane-wave EM? environment appropriate

to in-flight systems (away from the earth's surface but below the atmospheric

source region from a high-altitude (exoatmospheric) nuclear detonation).
Given its 12.75 meter plate spacing ALECS is strictly an EMP simulator with

respect to "in-flight" test objects of somewhat smaller dimensions in order

that simulator/object interaction not be too severe.

Another important early development in EM? simulation concerns the
source region of a near-surface burst. After some preliminary tests of

missile silo systems subjected to somewhat arbitrary EM excitation, a

simulator known as SIEGE was developed to simulate the magnetic field

distribution produced near the ground surface by a near-surface burst.

This simulator incorporated two concepts: the buried transmission line

[14] and the surface transmission line [15). In 1968 low-level testing'

was begun with the SIEGE simulator.I
By now EM? simulation has evolved into an extensive field in its own

right, with various simulator types available for various EMP environments.

AFWL has pioneered in the development of EM? simulator concepts and has

contracted the construction of the largest number of these. However, various

other American agencies including DNA, Naval Surface Weapons Center, and

Harry Diamond Laboratories have built some as well. Various European

agencies have also built some EM? simulators, generally somewhat smaller

than those in the U.S. For a review of the various EMP simulators, including

both existing simulators and those that as yet exist only conceptually, the

reader is referred to (101.

1.1.1.5 Notes on EM? and Related Subjects

V An important stimulus for the development of EMP technology was begun

in 1964 by Partridge of LASL. This was the Sensor and Simulation N~ote
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series begun by Partridge to stimulate thinking about EMP sensor and

simulation design problems. In 1966 the editorship was turned over to

Baumn at AWL who was by that time the major contributor. Various indivi-

duals at AML (some being now at RDA) had contributed to the expansion of

H the note series to include various other aspects of EMP technology.
Currently, the editor has divided the note series on EMP and related

subjects (or "EMP Notes" for short) into three major categories: EMP

(Electromagnetic Pulse), PEP (Pulsed Electrical Power), and ACT (Analytical

and Computational Techniques) encompassing over a thousand individual

papers. These represent most of basic EMP-related technology. A majority

were printed directly as notes, but some existing reports have been only
assigned note numbers. Various indices have been published and the most

extensive one (including detailed subject division) was published in 1973

[16]. A-previous extensive index was published by Quested of AWRE in the

United Kingdom in 1971 [171.

The Notes have functioned as a journal of the EMP community with

important contributions from agencies and contractors in the U.S. and

L1  U.K. Publication has been supported primarily by AFWL, but many other

agencies have made some contribution to this effort. The recent special

joint issue on the Nuclear Electromagnetic Pulse (8] is based primarily

on material that can be found in the Notes.

In addition to the individual notes, thirty volumes (about 400 pages

each) or so have been published beginning in 1970 by AFWL to compile the

early notes. The first few volumes were first published by DkSA (now DNA)

in 1968. In addition, a few special documents (handbooks) have been

published as volumes in this series.

1.1.2 PHYSICS OF EMP

Although the fact that a nuclear explosion produces an electromagnetic

pulse (EMP) was recognized as early as 1945 (see Sec. 1.1.1), it was some

time before the mechanisms of EMP generation were understood well enough

to make possible reasonably accurate predictions of signal amplitudes



and waveforms. EM? is now recognized by many as a potentially damaging

nuclear weapon effect, and yet relatively few people have more than a

rudimentary knowledge of the physics of EMP generation. Hopefully, this

section may help to alleviate that situation.

It should be noted that a systems engineer or interaction analyst

may never even see the results of a "real" EMP calculation. This is

because calculated ENP waveforms can be sensitive functions of weapon

- I design, burst location, and observer-burst orientation. Thus an EMP

criterion signal is often defined. This criterion signal often represents

I, ~an envelope that includes most or all EM? signals of a given type. Working i
with such a criterion signal greatly simplifies interaction analyses, but

it should be remembered that the criterion and an actual threat signal

are usually not identical.

Similarly, detailed predictions of EMIP waveforms will not be presented

here, partly because such waveforms are usually classified, but also because

the interaction analyst will probably be supplied with an EM? criterion

signal specific to the problem of interest. Instead, the presentation

here is aimed at giving the reader some idea of the basic mechanisms of EMP.

Aflow chart outlining the various steps of the EMP generation processI

is shown in Fig. 1. The process starts with a nuclear explosion. This

nuclear burst creates photons with a large range of energies.

For understanding EMP phenomena one is primarily interested in the

gama-rays (photons with energies of about 1 May) and the X-rays (photons

with energies of a few key) created by the burst [18]. These photons

interact with the material through which they pass (e.g., the bomb casing,

the atmosphere, or the wall of a satellite) by Comnpton and/or photoeffect

processes [19], creating free electrons and positive ions. The moving

electrons then create spatial current densities which serve as source

terms for Maxwell's equations. These fast electrons will also slow down

by ionizing the medium through which they move, creating numerous secondary

electrons. The low-energy secondaries will drift along the local electric

field lines and are thus often treated in terms of an effective conductivity.



Nuclear Burst
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Primary Electron
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Fig. 1. Flow diagram of EMP production mechanisms.

12



4

A conduction current is then created, which tends to cancel any electric

field set up by the primary current density. Once these current densities

are known, the magnitude and waveform of the EMP are determined by Maxwell's

equations.

The basic mechanisms outlined in the flow chart of Fig. I will first

be individually discussed in the following subsection. The various types

of EMP will then be described in terms of these basic mechanisms. Finally,

calculational techniques, unknowns and uncertainties will be briefly addressed.

1.1.2.1 Basic Mechanisms

1.1.2.1.1 Radiation Source Terms

a. The Gamma Source

The primary source of most types of EMP is the gamma-ray output of a

nuclear burst. Consider first a nuclear explolion in the air just above

the ground surface (surface burst). A hypothetical but not atypical example

of the gamma source strength from a 1-megaton surface bursI is shown in
Fig. 2 [20]. The total source is the sum of several components, each with

its characteristic decay time [18], The prompt gamma pulse comes directly

out of the nuclear device, has a rise time of several nanoseconds (ns), and

decays in a few tens of ns. The other gammas are made by neutrons that

leeve the device and interact with the air and ground. Fast neutrons

striking solid objects (e.g., the ground) very near the device make

inelastic scatter gammas in the same time frame as the prompt gammas. Fast

neutrons (energy > 6 MeV) make air inelastic gammas by inelastic scattering

in air. Ground capture gammas are made by neutrons which slow down and

are captured in the ground. Air capture gammas, made by the same process

in air, last longer because of the low density of air compared with ground.

Fission product gammas, the longest lived source, are emitted by fission

debris following the lingering beta decay of fission fragments.

For a burst somewhat above the ground, some time is required for

the neutrons to reach the ground, so that ground inelastic and capture

sources are delayed somewhat. At increasing burst altitudes, the intensities

13
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Fig. 2. Total gamma source strength versus time for a nominal 1-megaton
surface burst.

of the air inelastic and air capture sources decrease, and their lifetimes
increase, due to decreasing air density. For bursts at very high altitudes,
the ground sources are absent and the air sources delayed until neutrons
can reach the sensible atmosphere at altitudes of the order of 30 km. The
speed of the fastest neutrons is about 5 x10 7,sec.

While the prompt gamma source can be regarded as a point source, thesize of the air and ground sources obviously denends on the burst geometry.
In sea-level air, neutron mean free paths are of the order of 100 meters,
and the air sources have dimensions of a few mean free paths.

Approximate average y-ray energies and effective absorption lb.,gths
in the air are listed in table 2 for the various sources [19].
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TABLE 2. APPROXIMATE AVERAGE ENERGIES AND EFFECTIVE ABSORPTION

LENGTHS IN AIR OF GAMMA SOURCE COMPONENTS

Energy Absorption Length

Component (MeV) (gm/cm2)

Prompt 1.5 40

Air Inelastic 4 52

Ground Capture 3 38

Air Capture 6 58

Fission Fragment 1 37

Estimates of the gamma flux 1y at distance r from the burst can be made by
Y

using spherical dilution and attenuation factors, e.g., in uniform air

e- /a/47rr2

where Xa is the effective absorption length.

b. The X-ray Source

Because X-rays are more easily attenuated than gamma rays, they are

often of secondary importance in EMP generation even though the nuclear

burst generates much more energy in the X-ray energy range than in the

y-ray energy range. One major exception to this statement is the case of

an exoatmospheric system of interest (e.g., SGEMP effects on a satellite).

The X-ray output of a nuclear burst can be reasonably well understood

by just considering the debris as a thermal radiator with a temperature of

roughly 10 7 .K [18]. If one treats the debris as a blackbody radiator, then

one expects Planckian X-ray spectra with characteristic energies of the order

of 1 keV. Time histories have characteristic times similar to those of the

prompt y-ray output (i.e., rise time"- 10 ne), while the absorption lengthU 2
for a 10 keV X-ray in air is only 0.25 gm/cm (i.e., several hundred times

less than that of a prompt gamma ray).

15



1.1.2.1.2 Source Currents r
' a. The Co pton Current

At y-ray energies, the primary process by which free electrons are

produced is Compton scattering [19]. In this scattering process, an

incident gamma is scattered by an atomic electron, and the electron

recoils somewhat like a struck billiard ball. The angular distribution

of the recoil electrons peaks in the forward direction, so that a net

electric current results. The average kinetic energy of the recoil

electrons is of the order of one-half the incident gamma energy.

As the recoil electrons move through the air or other material medium,

they gradually lose energy to other atomic electrons through collisions,

dislodging some from their atoms and thus producing ionization. The

energy loss is sufficient to bring the recoil electron to rest within a

distance (track length) of a few meters in sea-level air. In addition, the

recoil electrons suffer many small-angle scatterings(multiple scattering), I
largely in collisions with atomic nuclei. The multiple scattering reduces

the mean forward range of recoil electrons to about two-thirds of the track

length [21].

The geomagnetic field deflects the Compton recoil electrons, leading

to components of Compton current in directions other than the direction

of the incident gammas. This effect is relatively small at sea level, for

the Larmor radius of the recoil electrons in the geomagnetic field is 50

to 100 meters, which is long compared with the mean forward range at sea

level. However, at 30-km altitude, the center of the source region for

high-altitude EMP, the mean forward range is comparable to the Larmor

radius. Thus the deflected (transverse) Compton current is comparable toj the radial current and is the principal source of the high-altitude EMP.

The Compton recoil electrons are also affected by the EMP fields.

EMP calculations which include this effect are called self-consistent, since

the fields are allowed to affect the Compton current which produces the

fields. Such calculations are non-linear and are usually performed on

a high-speed digital computer.
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It is easy to understand the general magnitude of the Compton current.

A steady flux 1 of collimated gammas will produce a steady flux of recoilY

electrons in the same direction, according to the relation

Oll[1 Rmf ~0.007 •[](2)

e y s y

where X is the scattering mean free path (-f the gammas, RMf is the mean
forward range of the recoil electron, ý e is the electron number flux,2 [l
is the gamma number flux (gammas per unit area per unit time), and •$]is

22
the gamma energy flux in units of y-MeV/em2 - sec. A dose rate of 1 rad/sec

corresponds to a gamma energy flux of about 2 X gamma -MeV/cm-sec. Thus

in terms of the dose rate D the radial Compton current density Jc is*
e r

JC(amps/m 2) 2 x 10-8 (rads/sec) (3)

r e

This formula is valid from sea level up to about 30-km altitude, where the

geomagnetic field limits the mean forward range. The transverse, geomagnet-

ically deflected Compton current density is

iJt = rJC(Rmf/2RL) (4)

where isc and J c are comparable.

where RL is the Larmor radius. At 30-1.0 altitude d t r

At sea level the effective lifetime (before stopping) of a Compton

recoil electron is a few ns. Thus the waveform of the Compton current will

be approximately the same as that of the gamma flux. At 30-km altitude the

*r

In this chapter 1 is used to denote the volume current density, whereas in

all other chapters J denotes exclusively the surface current density.
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PI] lifetime is about 1 microsecond (us), as is also the Larmor period. Here

the current waveform is stretched by the recoil electron dynamics in the

early part of the gam pulse. Fig. 3 shows typical radial and transverse

C• 8

0.0N

0 0( 50 100 150
' retorded. time 00s

Fig. 3.- Radial and transverse Compton currents Jc and cand secondaryr tr n eodr

electron density N versus retarded time at 31.4-km altitude for
e 2

a delta-function pulse of 4.62x 10 (1.5-MeV)gammas per cm ,

perpendicular to a geomagnetic field of 0.6 gauss.

currents for a very short (delta-function) pulse of gammas [20]. The

currents are plotted as functions of retarded time tret T/c, where

T ct-r (5)

for convenience in understanding the solution of Maxwell's equations.

Note that if a recoil electron starting at t- 0 moved outwards with speed

c (the speed of light) its retarded time would remain equal to zero. The

18
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fact that the recoil electrons do move outwards with speeds close to c

accounts for the relatively large amplitude of J and JC at early .

retarded times. i

b. Photoeffect Currents

At X-ray energies the dominant electron production process is the
photoeffect 119]. In this case, the incident X-ray photon disappears with I

part of its energy going to free an electron from a bound state near a

nucleus and the rest of its energy going into kinetic energy of the free

electron.

Photoeffect curreuts are of secondary importance for EMP except for

observation points very near a nuclear burst or at vacuum/material inter-

faces (i.e., SGEMP source currents). The subject of electron emission

from vacuum/material interfaces is too complicated to treat in detail here.

As an example, however, typical electron yields for various blackbody X-ray

spectra incident upon several materials are listed in table 3 [22].

TABLE 3. BACKSCATTERED ELECTRON YIELDS FOR SEVERAL BLACK-BODY SPECTRA

Incident Photon Aluminum Gold Silicon Dioxide
Blackbody (electrons/ (electrons! (electrons!

Temperature calorie) calorie) calorie)
(keV)

1 3.04 (13) 1.16 (14) 2.30 (13)

2 1.25 (13) 7.21 (13) 8.86 (12)

3 6.49 (12) 4.66 (13) 4.49 (12)

5 2.57 (12) 2.50 (13) 1.74 (12)

8 1.03 (12) 1.33 (13) 6.94 (11)

10 6.49 (11) 9.71 (12) 4.35 (11) 1
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1.1.2.1.3 The Air Conductivity

A Compton recoil electron makes approximately one secondary electron-

ion pair for each 85 eV lost by it in collisions with atoms. Host of the

secondary electrons have energies of the order of 10 eV, but a few have
larger energies, approaching one-half that of the original electron. The
more energe~tic secondary electrons produce tertiaries, etc. When all the

ionization is completed, there is approximately one electron-ion pair for

each 34 eV lost by the original Compton recoil electron [23). Thus a 1 Hey

[j electron will produce eventually about 30,000 electron-ion pairs. The

effects of these electron-ion pairs are often modeled by an equivalent

conductivity.

Both electrons and ions contribute to the conductivity, so that it is

necessary to keep track of their densities. At low altitudes free electrons

are removed predominantly by the attachment process

e +0 2 + 0 2 40 2+ 02  (6)

which produces the negative oxygen ion. At very high electron and ionI

densities, dissociative recombination removes both electrons and positive

2 (7)

e + N~ +- N + N

Positive and negative ions remove each other by mutual neutralization,

with the help of a third molecule M (either 02 or N 2)

0 + 10

0 2+02+ M 0 2 + 2 + M

I 1W (8)
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+ and+
Both 02 N. are produced along with e in the original ionization. Since

the conductivity properties of 02 and N2 are nearly the sime, it is not

necessary to keep track of both species separately. The common treatment

defines densities Ne, N+, and N of electrons, positive and negative ions

respectively, which satisfy the differential equations

dN

dt Se- klNe k 2NeN+

dN+
se - k2 NeN+ - k3N+N- (9)

dN
k N kdt lNe- k3 N+N

Here S is the rate of production of electron-ion pairs. The rate constants
kl, k2 k3 are for the reactions (6), (7) and (8), respectively [24). 1
Typical values of these constants at sea level and their scaling with air

density Paare

k = 108 /sec, k 
I2

k = 2 x 10- cm /sec, indep. of Pa (10)

k3 = 2 x 10 cm /sec, k 3 Oý Pa

The value of kI is affected by the presence of an electric field. Also,

the complete recombination chemistry is somewhat more complicated than

described here, especially in the presed•ce of water vapor [241.

Simple approximate solutions to (9) are often useful. For example,

the reaction (7) is usually negligible compared with (6). At early times,

then, for an ionization source S which changes slowly in a time interval

compared to 1/kl, the electron density is approximately

Ne = S/k 1  (11)
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For a source which rises exponentially, Se- e (as for fission chain

reactions), the solution is

N Se/(++kl) (12)

1< -2
For a source which falls more slowly than t-, the late-time ion densities

are

N - N • /Seik 3  (13)N_.

-2
Finally, for a source which falls more rapidly than t , the late-time ion

densities are

N = N+ u (k 3 t)- (14)

The ionization source Se can be related to the dose rate De Since one

rad is defined as depositing 100 ergs/gram, and since 34 eV are required 2
to make one electron-ion pair, one has the relation

I\cm-sec) o eec/

Here pao w 1.23 grams/liter is the density of sea-level air. This relation

assumes that all ionization is completed in times short compared with the

variation of DLe

The mobility Ve or pi of an electron or ion is defined as the ratio

of its drift velocity to the electric field causing the drift. Typical

values of the mobilities at sea level and their scaling with air density

pa are

m )-iui -0.3o
e (sec, m Pa (16)

- Pa2

2. x1se MP
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Small differences between the mobilities of various ions are usually

neglected. The electron mobility is not independent of the electric

field, and is affected by water vapor [23,24].

Since the mobility of electrons is much larger than that of ions,

electrons dominate the conductivity at early times when the densities of

electrons and ions are comparable. In this circumstance the air conduc- i
tivity is_.

a eNePe (17)

where -e is the electron charge. Using (12) and other data stated above,

we can relate the conductivity to the dose rate and find

/ (Smho° 1x10-4_a
6(• 1 e\ as-)- (18)

This result is independent of air density, except through the term k18 It

should be noted, however, that variation of the ionization completion time

with pa and the dependence of ue on E/p (E - electric field) make thea e a
results only approximate.

At late times, when the electrons are almost all attached in 02, ionI

conductivity can dominate.

1.1.2.1.4 The Spherically Symmetric Case

In Sec. 1.1.2.1.2 an expression for the spatial current density Idue

to primary Compton electrons was derived and a conductivity a was calculated

in Sec. 1.1.2.1.3. One then has the information necessary to solve the

Maxwell equations

o + Vx -0 (19)

-0 + V I + (20)
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Eq.(19) indicates that DH/ýt is zero if Vx E is zero. Thus, the magnetic

field will remain at its initial value (usually assumed to be zero) if the

electric field is curl-free. The spherically symmetric geometry is one

such case. For this case, V xH , 0 in (20), and if Ichas only a radial

component centered at the burst location, then (20) becomes; ii
DE _c

C + r= (21)

0o r r (

Note that in this case the electric field is purely radial and non-zero
only within the source region where JCis non-zero.

r

The solution of (21) is easy to understand. At early times, Jc and a

begin at arbitrarily small values, and increase. Therefore, Eralso begins

at arbitrarily small values. Thus at sufficiently early times, the term

aEr is negligible. In this time regime, the solution of (21) is
Ir

lt
Er JCt (22)

r eC - d r

which indicates that Jr. is creating the electric field Er in space, which will

rise exponentially if J does. At some time, the conduction current aEr

may become comparable to the displacement current eoaEr/at. If after

this time we neglect the latter, we obtain

j c
r - (23)

r oy s

From (3) and (18) we see that E is independent of the dose rate D ,since
c e

jrand a are proportional to D Thus E becomes constant at the saturatedr er

value E5.

From (3) and (18) we find
I

E( V 2 x10 4 (c+kl)(sec-l) (24)
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With a 2 x 10 (not atypical), this formula gives E. 6 x10 V/m at sea

lee wee ix18 4level where kI -i× 108 .and E. M 4 x 10 V/m at higher altitudes wnere k1
is negligibly small compared with a.

After the gama pulse and the Compton current reach their peaks, the

value of a effectiveiy goes to zero. Eq.(24) indicates that E will then1 4V/ s
fall to about 2 10 V/r at sea level. The displacement current remains

negligible, and E follows E . At sea level, within some kilometers from
r 5

the nuclear burst, this value is maintained for some tens of us, after

which the dominance of ion conductivity causes E to fall gradually,
r

approximately as r. This behavior can be deduced from the approximate
e

solutions(13) and (3).

It should again be-noted that for the spherically symmetric geometry

just considered, there are no radiated EMP fields (i.e., no fields beyond

the source region). If radiated EMP signals are to be created, there must

be some asymmetry in the source current distribution. The magnitude and

time history of radiated EMP signals can be very sensitive functions of

the source asymmetry; thus, much of the early work on the physics of EMP

was aimed at determining the most important sources of asymmetry.

1.1.2.2 Types of Electromagnetic Pulse

1.1.2.2.1 EMP From High-Altitude Bursts

One important type of EMP is generated by a nuclear burst above

the atmosphere at altitudes of 100 kilometers or greater. In this case

the prompt gamma output is the most important radiation source since

these gammas will penetrate farthest into the atmosphere.

As indicated in Fig. 4, the downgoing gammas will begin to interact

appreciably with the air at altitudes between 40 and 20 kilometers creating

a Compton current in this EMP source region. The Compton current has two

components. First, the component in the direction radial from the burst

produces principally a radial electric field. However, since only part

of the gamma shell intersects the atmosphere, we do not have complete

spherical symmetry. Thus some transverse fields, principally of electric-
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Fig. 4. Schematic representation of high-altitude EMP generation.

dipole type, are generated by the radial current. Second, the geomagnetic

field causes the Compton current to have a transverse component perpendi-

cular to the radial direction. This component directly generates outgoing

and ingoing transverse fields, principally of magnetic-dipole type. It is

this turning of Compton electrons in the earth's magnetic field that creates

the very large, early-time peak in the EMP signal from a high-altitude burst.

This mechanism was not anticipated prior to the 1962 nuclear test series.

As a result, many attempted EMP measurements were driven off-scale. This

magnetic-dipole signal was first explained by Longmire, and Karzas and

Latter [7] in 1964.

From a simple point of view, the large magnetic-dipole signal is

due primarily to the fact that the Compton source current moves radially

outward at the speed of light. The net result is that the fields radiated

by the various current elements (as shown in Fig. 5) will add in phase,

resulting in a large total signal. The situation is similar to a phased

array of antennas.
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Fig. 5. Diagram indicating the current elements due to geomagnetic turning

and how they add in-phase to give a large outgoing wave.

Because there has been a good deal of misunderstanding about the

various aspects of high-altitude EMP, it is useful to give a brief mathe-

matical explanation of the phenomenon. For simplicity, consider a planar

pulse of gamma rays approaching a flat earth with a flat exponential

atmosphere from the vertical direction. Let the vertical coordinate z

increase downward, i.e., z is essentially the same as the radial coordinate

from the burst, which is imagined to be very far away. Let the geomagnetic

field be in the y-direction, so that: the Compton current will have components
c C

J and J3. We will have field components Ez, Ex and Hy, which depend only

on z and t. Maxwell's equations become

3H BE

0oat = - (25)

BE 31
C x + E +Jc = y (26)0o '5 +ax x - --z
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aEa

e z +E + Jc -0 (27)0o a t Ez z

It is now convenient to transform variables to retarded time T and outgoing

and incoming fields F and G, where

ST 
Ct - Z (28)

F - E + Z H (29)x 0 y
G - E - Z H (30)

x 0 y

where Z is the impedance of free space. Thus

Ex- (F+G)/2 (31)

H (F- G)/(2Zg) (32)y 0

and under the retarded-time transformation, the partial derivatives are

replaced by

(33)

- -(34)

As a result of these transformations, Maxwell's equations become

oZ F Z0Z G+- -- ,-- - z 0=- - (35)
o2 ox 2

oZ G Z jc oZ FaG + o i1•G o x o (6"+- --- . C2 Xz - 4__ (36)

DE
-+ aZ E -- Z J (37)aT o z o z
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It is to be noted that the differential equation for E is uncoupled

from the other field components and that this equation has the same form

as the spherically symmetric field equation treated in Sec. 1.1.2.1.4.

The nature of the solution is thus the same as was previously discussed.
ccAt early times, E zis proportional to the time integral of J z , and if the

total charge displacement is sufficient, Ez saturates at the value -Jz/O.z z
The condition that saturation be reached while the Compton current pulse

is still rising as eat is that the peak conductivity reach the value

SE 0 a 10 3 mho/m (38)

Here we have used a 10 /sec. Using (18) as an estimate, we find that
dose rates of about 109rads/sec are needed to produce saturation of the

radial electric field. For a nominal 1-megaton burst, saturation would

occur only within slant distances of about 50 km between the burst point

and the EMP source region. We will see that it is much easier to saturate

the outgoing field F.

Now assume, as will be verified later, that G is small compared with

F. One can thus neglect the OZ0 G term in (35). When this term is dropped,

the equation for F has the same form as the equation for E just discussed

except that the derivative is with respect to distance z rather than the

retarded time T. Thus, for small a,

F(z,T) z- Z° J (z',T)dz' (39)

while if a is large enough, F will saturate at the value

S2J c

S• ~F -- x(40)

c

In an exponential atmosphere, both Jcx and a increase as exp(z/h), where

h is the atmospheric scale height. Saturation will thus occur when
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10 mho/m (41)
Z0h

This is much smaller than the value needed to saturate Ez as given in (38).

One can see that the transverse field will saturate at distances some 30

times farther from a burst than the radial field, or up to 1500 km for a i
nominal 1-megaton burst.

The reason F is more easily saturated than E is that F integrates JC

over a scale height, while Ez integrates Jc over the rise time multiplied

by c. The latter distance is of the order of a few meters, while the

former is about 7 km. It is for the same reason that G is small compared

with F as is indicated by (36) that G integrates Jc in time. Moreover, Ix

once F saturates, the source term Z Jc/ 2 + aZ F/4 effectively vanishes in

the G-equation. In this regime the outgoing wave F induces a conduction

current which effectively cancels jc, leaving no net current to drivex
ingoing waves. The smallness of the incoming wave G compared with the

outgoing wave F implies that

E = Z , F 2E (42)x 0oy x

so that (35) is approximately

DE

2 -+ ZoE =-Z Jc (43)

This equation, which is known as the outgoing-wave approximation or the

high-frequency approximation, is the basic equation of high-altitude EMP

theory. It was derived in Cartesian coordinates (as here) by Longmire in

1963, while the equivalent expression in spherical coordinates was presented

by Karzas and Latter in 1964 [7].

The behavior of the solution of (43) for Ex is the same as that dis-
cussed above for F. For a given retarded time T, E increases as exp(z/h) I
at very high altitudes. If the source is sufficiently strong, Ex will

saturate at

4
E ES-- =E 6x 10V/m (44)
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and remains saturated until the wave reaches an altitude below about

30 km where, due to absorption of the gammas, both ar and Jc fall away.
x

* Below this altitude, called the altitude of desaturation, (43) indicates

that 8E X/3z = 0, or E x constant; the EMP propagates as a free wave.

*Actually, of course, E xwill fall as l/r.

At very early retarded times, Jand a are very small and saturationx
does not occur at all. The rise of the final EMP is simailar to the rise

of the Compton current before saturation. The duration of the final EMP

is not longer than the duration of the Compton current pulse at the

desaturation altitude.

Many details of high-altitude EMP theory neglected in the above

discussion have been studied over the years and no serious problems with

the high-frequency approximation have been discovered. Both detailed

numerical [25] and theoretical (26] studies have been carried out.

1.1.2.2.2 EMP From Surface Bursts

For a nuclear burst in the air just above the ground or oceant

surface, a Compton current density and air conductivity are produced

as described previously. In this case, however, the source region is

primarily hemispherical, since radiation created by the burst will not

appreciably penetrate into the earth below the burst point. Also, soil

conductivities are of the order of 10O mho/m and the ocean conductivity

is about 4 uiho/m. These values are higher than the air conductivities

over most of the EM~P space-time source region. Thus, the ground shorts

out the radial electric field near it, and is often approximated by a

perfect conductor. The net result is that a radially directed Compton

current is generated in the hemisphere above the ground, resulting in a
radial electric field as discussed in Sec. 1.1.2.1.4. The asymmetry

introduced by the ground, however, creates transverse field components

which can radiate to distances large compared to dimensions of the
source region.

One simple model for understanding surface-burst EMP is illustrated

in Fig. 6. The net effect (ignoring retardation) of radially directed *
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S~Fig. 6. Surface burst geometry showing Compton electrons and net currentif: density, Jy Radiated fields are approximately proportional.
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net " 

-to dJe/dt (electric-dipole fields).

Scurrent densities over a hemisphere is a composite current perpendicular
i to the ground. This current is just proportional to the time derivative

of an effective electric dipole moment. The radiated fields seen by a
distant observer can thus be approximated by the radiated fields of an
electric dipole, and is proportional to the second time derivative of
the dipole moment (i.e., the first time derivative of the net current).

Another simple model useful for understanding how a surface burst
generates close-in magnetic fields is illustrated by the toroidal geometry
shown in Fig. 7. As noted previously, when the burst occurs, Compton
electrons flow radially away in the air creating a charge displacement.
Because of the relatively large ground conductivity, equilibrium near
the ground/air interface will be established by conduction current (aE)
flow through the ground. The net result is a toroidal positive current
flow toward the burst point in the air and away from the burst in theground. It is clear that this toroidal current flow will create a strong,
azimuthal magnetic field near the air/ground interface.

A basic theory of ground-burst EMP, including most of the important

physical mechanisms, was presented by Longmire in 1963. More detailed
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Fig. 7. Surface-burst geometry at intermediate times when Compton

electrons created near the ground flow back to the burst

through the highly conducting ground, creating a toroidal

current loop. Both Compton currents and conduction currents

are nearly radial close to vertical axis.

analytical treatments and complex numerical calculations have since been

carried out, and a complete theory is obviously quite complicated. Thus,

only a br'Jef o'tline of parts of the physics of ground-burst EMP will be
sketched i. the following paragraphs.

The surface-burst EMP can be understood in terms of three phases.

The first is the wave phase, in which the conduction current is small

compared with the displacement current. This phase corresponds to the

time before saturation and Maxwell's equations are approximately linear

in this phase. The diffusion phase is entered at saturation, when the

* I conduction current exceeds the displacement current and the latter can

be neglected. During this phase, the return conduction current (which,

in the spherically symmetric case, tries to cancel the Compton current)

shifts to the ground from the air just above it. Thus current loops

are formed and an azimuthal magnetic field is produced near the ground

surface. This field diffuses up into the air and down into the ground

by the familiar skin effect process. When the skin depth in the air
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reaches to an angular elevation of about 1 radian (referred to the burst

point), the diffusion is completed and the final, quasi-static phase is

entered. During this final phase the induction (transverse) part of the

electric field is small compared with the electrostatic (longitudinal)

part, and the Compton and conduction currents are approximately in steady

balance.

In mathematical terms, these various phases can be understood by
considering a spherical coordinate system, centered at the burst with

the polar axis perpendicular to the air/ground interface. In the air,

Maxwell's two time-dependent equations reduce to

o-~ -(rEd) + E Er (45)

3E
e +-+aE +J -r-----(rH) (46)

asr + Jc + J' (sin 6 14 (47)
Co r r r sin i (47

During the early-time wave phase, it is convenient to transform these

equations to retarded time and introduce outgoing and incoming fields, as

was done for the high-altitude EMP case. As before, the incoming field G

is small compared to the outgoing field F, and at early times the conduc-

tion current OE is small compared to the displacement current. One can

thus obtain the approximate wave-phase equations to be

9F Zca 3E
r + oF r (48)

-r 2 r f -

9E 3F
1 aE

r Z c + - F (49)
aT o r 2r 2

where
F r(E + Z H) (50)

r e o3
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T ct - r (51)

J has been assumed to be small compared to Jc, and sin 8 has been replaced

by unity since Fr is confined to angles near the ground surface.

An examination of these equations indicates that the outgoing %.ve Fr

is confined to a region near the air/ground interfoce (since DEr /38 is

largest there) and the field produced near the ground spreads upward as

it propagates outward.

At somewhat later times, during the diffusion phase, it is convenient

to return to the real-time equations (45)- (47). During this phase, the

conductivity has become large enough that the time-derivative terms in

(46) to (47) can be dropped (i.e., the displacement current is much

smaller than the conduction current). Since the magnetic field is

confined to points near the ground surface, one can introduce the local

vertical coordinate z = r(r/2-0). Eqs. (45) and (47) can then be combined

to give

o at az (52 1r z( z0

Note that this equation is Just the standard diffusion equation for

the skin effect which can be solved under various assumptions for the time

dependence of a, and hence the name "diffusion phase."

Rather than investigate the diffusion phase by directly studying (52),

a somewhat more intuitive approach using the geometry shown in Fig. 8 will

be taken. If one ignores the displacement current, then

V XH (53)

where I includes both the Compton and conduction current. The integral

form of this equation, using Stokes' law, is

Sf J dS (54)
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Fig. 8. Geometry for estimating surface-burst magnetic fields.

One can choose the line integral to be at a constant radius r and the

surface S to be on the air/ground interface. One then obtains 1
27rrH, = 7rr2J (55)

where J is the normal current density through the air/ground interface.4n

Thus

H 27r (56)

where I is the total current flowing normally through the surface. Hence,

the magnetic field at a given radius can be found from a knowledge of the

total current flowing vertically through the surface inside that radius.

One can estimate the total current through the ground in the following

manner. Consider the wedge shown in Fig. 8 through which the Compton

current flows to reach an observer at radius r. Assume that all currents

within a skin depth of the surface flow back through the ground and that

all currents abcvi this flow back radially. If there is no charge build-

up, the total vertical current will then equal the total current through

the right-hand vertical end of the wedge, i.e.,

I 27r6Jc (57)
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and

H 61jc (58)

where Jc is the Compton current at radius r and the skin depth 6 of a

plasma is given by

a 127 w- P (59)
LI .

where w is the frequency of an oscillatory waveform.

at
At early times one often assumes that the current rises as e A

characteristic skin depth is then

a /27 a -'o (60)

and

H 1 (61)

c atSince a and Jc are both rising as e it follows from (61) that

H• 0 eat/2 (62)

At later times, one can assume

6 Ta (63)

so that

H ~c vT/a

Yr -- • (64)
a

This last expression is useful since Jc/a is Just the saturated electric

field, which is approximately a constant. Thus, the time history of HI

in this regime depends upon v. The peak H will then occur near the

peak of the gama pulse and Compton current. After the peak, H• varies

1
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only as the square root of gamma flux. As a result, H. does not

* ~decrease much during the remainder of the diffusion phase.4

In the quasi-static phase, the divergence of the total current

density must vanish, and Eýmust be derivable from a potential *which
must satisfyI

V *(aVo) - V-1 (65)

Longmire has shown that the solution of this problem is such that the

elect~ric field and the conduction current are very nearly in the 8

direction. Thus while the Compton current flows outward radially,

the return conduction current flows down to the ground in the 8

* I direction.

We have not discussed here the EMP problem in the ground, which

is dominated by conductivity [27,281. Soil conductivities and permit-

tivities typically vary substantially with frequency and the water

content of the soil.

1.1.2.2.3 EMP From Low-Altitude Bursts

For low-altitude nuclear bursts, the basic physics of EMP generation

is quite similar to the mechanisms already discussed - the geometry and

relative timing of the various ef fects are more complicated, how'ever.

For higher bursts (e.g., 30 -50 kin) the geomagnetic turning signalj

will be important, as it is for high-altitude bursts. However, as the

altitude of the burst decreases, the magnitude of the geomagnetic turning

signal also decreases because the increasing air density decreases Compton

electron ranges and lifetimes. The air density gradient will still give

an electric-dipole EMI' following the magnetic-dipole signal.

At lower altitudes, the magnetic turning effects are small and the

weak electric dipole source caused by the air density gradient becomes

the dominant radiation mechanism. As the burst altitude is lowered

still further, the gamma deposition region begins to intersect the

ground, and the situation is similar to the ground-burst case discussed

previously.
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The nature of low-altitude EMP thus changes from nearly a high-

altitude EMP signal to a ground-burst signal as the altitude of the

burst is lowered. As this transition is made, the magnitude of the

radiated EMP becomes quite small. Low-altitude effects are thus often

ignored in favor of the more severe system threats posed by the high.

altitude or ground-burst signal.

1.1.2.2.4 Dispersed EMP

The term "dispersed EMP" (DEMP) has been applied to describ.. ibh

case where the radiated signal. from a high-altitude nuclear burst misses

the earth (e.g., when the ray is tangent to the earth's surface) and

travels out into space after traversing the ionosphere. Since the iono-

sphere is a dispersive medium (i.e., different frequencies will travel
at different velocities), the dispersed pulse leaving the ionosphere will

be considerably different from the pulse entering. Calculations show

that a monopolar high-altitude EMP signal will be converted to a much

longer pulse that resembles a swept CW waveform [291.

1.1.2.2.5 MHD EMP

Thus far, all of the various types of EMP discussed have resulted

in early-time signals with characteristic times related to the radiation

output of the nuclear device (i.e., milliseconds or less). Electromagnetic

signals are also generated at much later times (tens of seconds after the

burst) due to the hydromagnetic motion of the atmosphere and device debris.

For simplicity, all such very late-time EMP signals are referred to here

as magnetohydrodynamic electromagnetic pulse (MHD EMP).

A simple explanation which illustrates the basic ideas of MHD EMP

is known as the magnetic bubble model. A nuclear burst will ionize the

, Iregion of air surrounding it. This highly ionized region will also be

heated and thus rise and expand as time progresses, according to the
laws of hydrodynamics. Because it is highly condicting, this "bubble"

will also force out any nearby geomagnetic field lines as it expands.

A simple calculational model is thus a perfectly conducting sphere with

Sa time varying radius immersed in the earth's magnetic field. The net
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effect is a change in the electromagnetic field due to the earth's magnetic

field being pushed out.

This mechanism for generating EM signals has been postulated for some

time [6]. Current theories are more complex and include such effects as

motion of regions of the ionosphere. In any case, it appears that the

resulting fields are quite low but they can exist over long time periods

and large areas. There has thus been some recent concern with coupling

to very long communication lines. Work on detailed MHD EMP calculations

is presently underway.

1.1.2.2.6 SGEMP/IEMP

System-generated EMP (SGEMP) and internal EMP (IFMP) differ from

other types of EMP previously discussed in that the current densities

that drive the Maxwell equations are created by the interaction of the

incident radiation (X-rays or gamma rays) with the system itself, rather

than air or ground near the burst. The system of interest whether a

satellite, missile, or ground vehicle, must therefore be close enough

to the burst to intercept some of the emitted radiation.

One common example is an orbiting satellite within a direct line-

of-sight of an exoatmospheric nuclear burst [30]. In this case the only

radiation attenuation is the r geometric fall-off and X-rays will be

the dominant source of electron emission from external surfaces of the

satellite. The radiation will also penetrate the structure, and both

X-rays and y-rays will create free electrons inside the satellite.

Because source currents can be generated anywhere within the system,

simple hardening concepts such as external electromagnetic shielding may

be much less effective than for other types of EMP.

A detailed discussion of the physics of SGEMP/IEMP would be too

lengthy to include here. Calculated fields, currents and charges tend

to be very system-specific and highly dependent upon assumed parameters

of the incident radiation. General comments are thus difficult to make.
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One point that should be made, however, is that SCEMP calculations

often require a self-consistent treatment for the current densities used

to drive Maxwell's equations. Here "self-consistent" means that the

effects of the resu~lting electromagnetic fields on the subsequent motion

of electrons which make up the source current density must be included.

The driving current density is thus coupled to the resulting fields, making

the problem highly non-linear. This self-consistent effect is especially

important for SGEMP because many of the electrons are produced by incident

X-rays and thus have low energies [31]. The motion of these low-energy

.1 photoelectrons is more easily influenced by the fields than higher-energy

Compton electrons produced by incident gammas. Note that for other types

of EMP, self-consistent effects are usually a minor correction but for

SGEMP such effects may be dominant.

1.1.2.3 Calculational Techniques

1.1.2.3.1 Analytical Methods

Analytical methods are quite useful for gaining a general under.-

standing of a phenomenon and for determining just what parameters are

important. Approx~imate analytical techniques have thus been used previously

to explain the basic physics of different types of EM?. Such methods as

variable transformations and ignoring certain terms in differential

equations have been used to make the problem tractable and to identify

the phases of the problem when certain physical effects are dominant.

As with most areas of physics, however, purely analytical techniques

are limited in terms of the complexity of the problems which are soluble.

Problems for which analytical solutions can be found are often far from71 realistic.

In the case of EM?, the combined set of differential equations used

to describe the Compton source current, the air chemistry, and the resulting

electromagnetic fields is obviously quite complex and complete analytical

solutions can be found for such simple cases as those with spherical symmetry.

K 1.1.2.3.2 Numerical Methods

[IAn alternative to analy tical solutions is the use of numerical methods.
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Numerical techniques using large, fast computers enable one to calculate

the response of models which are much more realistic than can be treated

with purely analytical methods. Computer calculations can be thought of

as "numerical experiments." These "experiments" can be complicated and

involved, depending upon the degree of realism desired. Numerical calcu-

latiorts can have the disadvantage of generating massive amounts of output

data. Checking and understanding such results can be a difficult and

time-consuming task. Errors are thus easily made and results are often

misinterpreted.

Work on EMP computer codes started at about the same time as the

detailed analytical studies did [32,33]. The early work and almost all

subsequent numerical studies have been based on finite-difference

equivalents of the various differential equations presented earlier.

EMP codes are thus typically based on some time-stepping procedure

combined with a spatial grid. Sometimes one spatial dimension is
suppressed by expansion techniques, e.g., using spherical harmonics toI
represent the angular dependence of a spherical geometry, Such time-

domain, finite-difference calculations make good sense when one remembers

that the source current densities and the conductivities used in Maxwell'sI

equations are strong functions of space and time. In fact, the rapid

variation of such functions near the gamma wave front makes it often

advisable to finite-difference t~he retarded-time equations, rather than

to work in real time. It has been discovered, however, that numerical

solutions in retarded time can have stability problems [341 that require

special numerical techniques.

Such EMP computer codes have been used to investigate the accuracy

of various approximations made in analytical investigations. For example,I

the CHAP code has tested the accuracy of the high-frequency approximation

(43) by including the ingoing wave in Maxwell's equations. Computer

results show that the high-frequency approximation is indeed usually '
valid. Code calculations have also included detailed radiation sources,

the full set of air chemistry equations, X-ray in addition to gamma ray

effects, and self-consistent source current calculations. These effects
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.1 1
do, of course, change the details of the EMP signal produced. In general,

however, such numerical studies have verified the overall accuracy of the

general picture presented here.

Computer calculations also have certain limitations. Reasonable

amounts of computer time and storage allocations mean that most EMP

environment calculations assume a two-dimensional spatial geometry.

Running such time-stepping codes to late times can also be a problem

because of stability and accuracy limitations.

1.1.2.3.3 Comparison of Theory With Data

In the 1962 high-altitude test series there was at least one successful

measurement of the high-altitude EMP waveform. The measurement was made

by Wakefield of Los Alamos Scientific Laboratory. The result is shown in

Fig. 9 along with a calculated EMP waveform and the same waveform after

A- CHAP code

A B =curve A convolved

with instrument response
SC znmeasured

C

L0

(3

II

time (arbitrary unidt)

Fig. 9. Comparisons of experimental and theoretical EMP waveforms.
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being convolved with the instrumentation response function. The agreement

between the two waveforms is fairly good, considering that the instrumenta-

tion response function is somewhat uncertain. Existing ground-burst EMP

data also appears to be consistent with analytical and numerical predictions.

The agreement between theory and measured data tends to indicate that our

understanding of the physics of EMP is reasonably well developed.

1.1.2.3.4 Unknowns

Although the overall physics of ElMP is fairly well understood, there

are still areas of uncertainty. Also, specific system vulnerability issues

are continually resulting in the need for further environment calculations

and increased accuracy.

Among the major unknowns at the present time are certain details of

air chemistry reaction rates, the nature of late-time radiation sources,

and the entire problem of late-time (i.e., times greater than 100 msec)

EMP. Research into these areas is presently underway.
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CHAPTER 1.2

TOPOLOGICAL DECOMPOSITION OF SYSTEMS

The FMP aalysis of a large system is complicated by not only the
physical and electrical complexity of the system but also the electrical

properties of many system components that are not well understood

throughout the EMP spectrum. To carry out the analysis it is often

convenient conceptually to define a series of transfer functions (or,

more precisely, operators) which relate the incident EMP signal to a

response somewhere within the system.

One approach to determining these transfer functions for a large

system is to subdivide, if possible, the system into a number of smaller,

less complicated, and relatively independent pieces. The analyses of

these smaller independent pieces are much easier to carry out, and the

response of the entire system may then be constructed from the analyses

of these pieces.

In order to facilitate the partitioning of a large system it is

convenient to view the entire system as being constructed from a large

number of conducting surfac s which attenuate or shield, to a certain

degree, the incident electr magnetic wave as it propagates into the
system. Thus, it is helpf/l to have a description of the electromagnetic
shield topology, or a description of how the shielding surfaces of the

system are configured, to perform such a decomposition of the system.

1.2.1 BASIC DECOMPOSITION CONCEPTS

The concept of shielding topology(or geometry)and its application

to EMP analysis has been described in a number of reports [1- 4]. One
•j first defines a nw. ,c: of shield surfaces through which EMP energy

penetrates at discrete or localized areas. The most obvious of such

surfaces is, for example, the exterior skin of an all-metal aircraft

with its windows, skin joints and antennas being points for energy

penetration. Upon penetrating this outer skin additional surfaces
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may be encountered, which serve to further enhance the shielding of the

system. Smaller metallic enclosed areas in an aircraft, such as conduits

and equipment housings, are examples of such additional surfaces. Similarly,

inside these surfaces, another conducting surface may be evident in the

form of shielding on cables.

For each of these surfaces one may define a number of fundamental

problems for the determination of the energy penetration into and through

the shielding regions. These problems include field penetration through

apertures, direct energy propagation along insulated conductors piercing

the shield and diffusion through the imperfectly conducting shield surfaces.

Similarly, a number of mechanisms can be identified for energy propagation I
within a particular shielded region. For this internal propagation problem

the transmission-line propagation is usually the most important mechanism.

As an example of the decomposition of a large problem into a set of

smaller problems, consider a simplified interaction problem of a cable

located inside a highly conducting shield with an aperture in it (Fig. 1).

perfectly conducting

+ ouplingS)
apertur * __-_--- -

due to EMP

equiv alent Internal

E 
so u rc e s " ro p a g o t io n

Inc
o nt ident EMP regponse

Fig. 1. Simplified internal interaction problem with one port

of entry for EMP energy.
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Note that the shield could represent the skin of an aircraft, the outer

surface of a shielded room, or any other reasonably well-shielded region.

The steps in carrying out the internal interaction analysis depicted in

Fig. 1 are solving the following elementary problems:

(1) Determine the equivalent sources within the aperture in terms

of the surface current and charge densities on the exterior

surface of the shield with the aperture completely covered

up by perfect co~nductors. To do this often requires the

assumptions that the aperture is electrically small and its

dimensions are smaller than the local radii of curvature.

fields within the cavity.

(3) From the cavity fields determine the voltage and current sources

exciting the cable.j

(4) With the cable sources found in (3) compute the distribution

of cable currents and voltages.I
At this point, it may be necessary to repeat steps (1) through (4)

if the cable in the problem happens to be a shielded cable with additional

conductors within the shield.j

As may be noted from this example, under certain assumptions the

overall problem may be broken up into simpler, independent and tractable

pieces, and the electromagnetic geometry or topology of the system provides

the rationale for how the problem should be subdivided. It should be

remembered, however, that this approach of treating the interaction problem

is only approximate.I

Once each of the subproblems in the above example, i.e. ((a) relating

the incident VA fields to the outer surface charge and current, (b)

V . relating the cable sources to a voltage or current (V,I) on the cable at

a particular observation point) has been solved, an approximate solution4

to the overall problem may be expressed via a series of transfer functions

or operators as
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(vI)- zcble• zint • ext • (ii) (i)

which may be written as

(NF,I) - z zi Wa(•'-Hi) (2)

where the product n is over all the Z's comprising the path taken by the

EMP energy. Note that the Z's depend on the location as well as the nature

of the source. The subscript "ap" serves to remind one of the fact that

the point of entry for EMP energy is the aperture. The notation (V,I)

indicates that either V or I is the quantity being calculated.

In the preceding example there was only one path for the EMP fields

to excite the cable. In an actual system, he,-2ver, there may be many

parallel paths simultaneously contributing to the response at a load.

Consider the same cavity/cable problem previously examined, but now with

a penetrating conductor (perhaps an antenna) which couples additional

energy into the cavity, as illustrated in Fig. 2. This more complex

peroftly oonduotWng

E

.. I aperture-

antenna path 2

Fig. 2. Simplified internal interaction problem with two

ports of entry for EMP energy.
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problem can be solved by superimposing the result for the aperture

penetration (path 1) with the result for the newly added coupling path

(path 2). Similarly, the latter can be expressed as

(vIpath 2 1(ni zl )ant (3)

The total approximate solution for the two linear, independent paths has

the form

(I)EHi Ia + z i).(EP(4
iap Y ant

This concept may be generalized for any number j of linear, indepen-

dent coupling paths to the following relation

(V,I)toa Z E ,H )(5)

path

In the preceding examples, three basic phenomena have been illustrated.

It will be useful to summarize these here, since these concepts will be

employed throughout this document. The first phenomenunis coupling of

EMP energy. By this is meant the determination of local driving

source terms, either voltage and current sources, or equivalently, E

and H which induce currents and charges on the surface of a shielded

enclosure. The enclosure may be the skin of an aircraft with the exciting

field being the incident EMP, or it may be a cable shield with the exciting

field being a cavity field.

The second concept is that of propagation. This refers to the move-

ment of the induced currents and charges and/or electric and magnetic

fields throughout some volume or shielding layer. Propagation is then

the solution to the equations in response to the coupling sources.

The third mechanism, penetration, relates to the excitation of the

interior of a shielded region by the charges and currents residing on

52 '1



the exterior surface of the region. These currents and charges may

penetrate the surface through small apertures, penetrating conductors

or by diffusion. This mechanism, then, refers to the conversion of the

solution to the propagation problem into forms appropriate to be sources

in the next shielding layer.

This entire process is referred to as EN? interaction within the

particular region in question. If the problem involves the first

shielding layer of a system, the term external interaction is often

employed. Internal interaction is used to denote the EM? interaction

process which occurs within the shielded regions inside the system.

From this viewpoint the EN?- interaction calculation for an entire

system consists of a sequence of calculations of coupling, propagation

and penetration within each shielding layer of the system. The results

of an interaction ~calculation at one layer of the system thus serve

as a starting point for another internal interaction calculation

performed in a smaller, better shielded region. It must be emphasized

again that the validity of this viewpoint lies in the assumption that

each shielding layer is a very good shield.

~ j1.2.2 DECOMPOSITION OF LAYERS

As discussed in the previous section, a large system nay be divided

into a number of smaller, relatively independent pieces for an approximate

EN? analysis. The method of determining precisely how the system should
be divided is based upon a study of the topology of the system. This,

then, is essentially an investigation of the configuration and properties

of the geometric volumes which comprise the system and which remain

unchanged under deformation of the system, so long as no surface passes

through another.

To permit a precise description of the structure of a large system,

it is necessary to define a convention for labeling the various volumes

and surfaces comprising the system. The following notation will be

Used throughout this section:
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V - volumes of the systemY

SC = surfaces representing boundaries between various volumes

The subscripts y and ý can represent one or more integers which serve

to distinguish the various volumes and surfaces of the system. Generally,

the subscript y is of the form (j,k) and C is of the form (J,k;t,m).

However, for simple systems y and ý may comprise fewer numbers.

As an example, consider the schematic diagram of a simple system

shown in Fig. 3. For this particular case, the volume exterior to the

Hjdif fusion •

penetration ap~i oerture

exterior region S 01 penetration

Fig. 3. Simplified shield topology.

system will be denoted by V0 , with the value of the subscript increasing

by unity upon moving into the sys:em. Each surface Sk separates the

volumes V and V. This diagram, representing the conducting surfaces

of the system, is referred to as the topological model of the system.

Thus, with this notatioa the surface S0,I repaentF 5 he t -exterior

surface of the system. Upon penetrating this surface, EMP energy

propagates within volume Vl, penetrates surface S 1 2, propagates

within volume V2 , etc., until it reaches the component level within
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the system. The total number of shielding surfaces penetrated in this

fashion is said to be the shielding level of the system.

In a conventional metal-skin aircraft, SoI refers to the aircraft

skin, and the S shielding layer is often simply the braided shields

of coaxial cables or the metallic shields surrounding electronic

components. The B-1 aircraft is an example of a system with a possible

shielding level of 3, the three surfaces being the aircraft skin, the

conduit enclosure designed for additional EMP protection, and the outer

conductor of shielded cables (if any) within the conduit.

It is to be noted that the above definition may not be sufficient

to describe a complex system. An actual aircraft will have additional

compartments located inside the S surface, but which are part of V

These compartments, such as the bomb bay, wheel wells and equipment J

bays, can act much like a shielded enclosure and may be referred to as

elementary volumes or subvolumes. The formalism applied to the analysis

of the shielding properties of the S surfaces can also be used for
iii

treating these enclosures.

Because all of these elementary volumes occupy part of the same

principal volume Vi, it is necessary to employ another subscript k to

distinguish the various regions. Thus, the kth subvolume within the

jth region will be denoted VJk with the subscript k being dropped if

no subvolumes exist. Fig. 4 shows a hypothetical example of a more

complete version of a shielded system. Within the V1 region, it is

noted that there are four subvolumes denoted by k 1,2,3 and 4. These

volumes can be identified as V,1 1 V1 ,22 etc. Since a particular I
volume within a system can be labeled by two indices, j and k, it is

convenient to refer to these indices as the longitudinal and transverse

shielding numbers, respectively.

In this case, it is necessary to expand slightly the index on the

term S to permit a precise definition of the various surfaces. The

surface dividing volumes V and VZm may be described as
sraeJ,k 2.mSj~k;tlm

Some of these surfaces are indicated in Fig. 4.
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deliberate i

V2,

'0,1 1,4 1,4 VSO'IllV2,I • ' ' bulkhelad /do

door aperture

•VI,• (door, window)

outer shield
(aircraft skin)

Fig. 4. A more general topological model.

Referring back to Fig. 3 the term external interaction can now be

regarded as the determination of the currents and charges induced on

the surface S0,I of a system due to external sources in V The

response may be either in the time or frequency domain and is calculated

by solving an appropriate boundary-value problem. The results of the

external-interaction calculation on S0,I are then used to determine

equivalent electromagnetic sources on this surface. These sources

will radiate into V1 and induce currents and charges over S1,2. Internal

interaction within a typical volume V., therefore, may be formally

defined as the excitation and propagation of charge and current on an

4 internal longitudinal layer or surface S due to sources on surface

S1 _I.1  or within the volume Vj.

It is also desirable to introduce the concept of the order of the

internal interaction, which may simply be denoted by the J-index of the
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volume in which the internal interaction is being considered, or by the

J-index of the surface S for considerations of surface penetration.

Thus, exterior penetrations (from V0 to V1 through S0 ,) are described

as penetrations of. first order, and internal interaction within VI is

also said to be of first order. The maximum shielding order possible

on a system is defined to be the level of shielding.

Another concept for analyzing large system problems is the interac-

tion sequence diagram. This is a diagram of all possible interaction

paths from one volume to another in the system topological model. A

portion of the interaction sequence diagram for the geometry of Fig. 4

is illustrated in Fig. 5. The dotted lines represent the configuration

ZI

L OJ

A V

I \

__1_ , ] I##

I_ -I
I I

outlide

V Fig. 5. Interaction sequence diagram.
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of the system and the solid lines are the interaction paths from the out-

side volume V0 to various volumes inside. The transfer operator for a

particular path connecting the Vj,k to the V ,mis denoted by Zjk;.

For more than one point of entry, a superscript (1), (2), etc., will

distinguish the different transfer operators if more than one path

exists from one volume to another.

It is useful to examine a few possible types of interaction sequence

diagrams for hypothetical systems. Fig. 6 shows this diagram for a systm

of shielding order of 0. Fig. 7 is for a system of shielding order of

1 with the cable shields as the shielding layer, and Fig. 8 is for a

system with the same shielding order but with the external skin being

the shielding layer. Fig. 9 represents a case with a shielding order of

2 with the shielding layers being external skin and cable shielding.

In many practical cases, the largest contribution to a response

within the system is due to transmission lines which provide a direct

propagation path from one point to another. If only the direct connec-

tions are kept in the interaction sequence diagram, the result is a

transmission-line network consisting of a number of Junctions J n connected

by various transmission lines, either single wire or multiconductor,
forming a bundle or "tube," Tn,ms which connect Junctions Jn and Jm.

Fig. 10 illustrates a hypothetical transmission-line network which is

similar to that encountered in ENP analysis problems.

The configuration of the transmission-line network thus formed from

the interaction sequence diagram is similar to that of a low-frequency,

lumped-element circuit. Fig. 11 illustrates the corresponding linear

graph for a circuit, where there are a number of interconnected branches

Bn,m connecting nodes Nn and m" . The only difference between this graph

and that for the network of transmission lines in Fig. 10 is that the
voltage and current relationships at the nodes and branches are described

in a different manner. The graph configuration remains the same.
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EMP
Environment

Includes System Location (in
Air, on Ground, on Water, in Space)

Interaction
mv

External Response of System
Including Cables to EMP

Structures, Large Antennas, Cables,
Power and Communication Lines

Antennas Small
Compare( to

System

> Signal Transport
in Cable
Networks

S'1'

Black Bcxes Interactionand

Circuits

I System
Functions

Fig. 6. EMP interaction sequence for unshielded system with unshielded

cables: shielding order - 0.
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EMP
Environment

Includes System Location (in
Air, on Ground, on Water, in Space)

Interaction

External Response of System
Including Cable Exterior to EMP

Structures, Large Antennas,
U Cable Shields, Power and

Communication Lines

X4

r . Antennas Small
Compared to

System

Localized Coupling
to Cable Interior

SDistributed Coupling (Connectors, Holes in
to Cable Interior Shield, Break in

L [ Shield, etc.)

'0

SSignal Transportin Cable Networks

Black Boxes Interaction
and Circuits

Functions

Fig. 7. EMP interaction sequence tor unshielded system with shielded

cables: shielding order 1.
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F2{P

Environment

Includes System Location (in

Air, on Ground, on Water, in Space)

Interaction

(Including Large Appendages)

Structures, Large Antennas,
Power and Communication Lines

Shi~elding 1

W Exerior Metalj

W) Non-ApertureAprue
Inadvertent (on Exterior

Antennas SmallTI

CouplingCompared to

r 4 to Cables

Black Boxes - - Interaction t_
and Circuits

Fig. 8. EM!P interaction sequence for shielded system with unshielded cables:

shielding order I
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EMP Environment

Includes System Location (in

Air, on Ground, on Water, in Space)

. Interaction
External Response of System to EMP

(Including Large Appendages)

Structures, Large Antennas,

0 ~Power and Communication Lines

Shiel ing
%" / (Exterior Meta
0) Envelope) I•! " /~Non-Aperture Apertures •'

I |Inadvertent (on Exterior

Penetrations Metal Enve lope) ntnnFSml| • ' '. ... IAntennas Small -

Compared to

4ALL~System
Coupling to

"Cable Exterior

Propagation on Cable Exterior

(Conduits, Branching, Bulkheads,
Ground Planes, Etc.)

Vl Ci
10 Distributed to Cable Interior
0- Coupling to (Connectors, Holes in

Cable Interior Shield, Break inS Shield, Etc.)

Fig. 9. EMP interactiin sequence for shielded system with shielded cables: ,

shielding order - 2.
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Fig. 10. Topology of interconnected transmission-line network.
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The relation between the fundamental elements of various network

graphs discussed above and the interconnecting topological quantities

of the system is illustrated in table 1. Note that tae first two cases

su1narized in the table pertain to the propagation mechanisms of signals

throughout the system, whereas the latter two describe the physical

structure of the system. !
1.2.3 HARDENING CONCEPTS

When a large system is viewed as being composed of a number of
shielding layers, as described in the previous section, the conceptual

approach to hardening such a system becomes apparent. By eliminating

all electromagnetic energy penetration through one particular shielding

surface, none of the shielded regions within this perfect shieldwill be
affected by the incident EMP. Expressed in terms of (5) this requirement

implies that one element Z for each of the j interaction paths should

be zero.

An actual system, howevet, does not have a perfect electromagnetic

shield and, thus, one must settle for trying to control the signals

induced within the system. For a large system which has been decomposed

into appropriate.pieces one possible hardening approach is to examine the
various terms of (5) to determine which interaction paths are most impor-

tanf- in providing the excitation to the interior of the system. This
will aid the analyst in determining his priorities in hardening the

system. A detailed discussion of hardness design and implementation on

actual systems will be given in Part 3 of this document.

I.
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CHAPTER 1.3

*FORMULATION OF INTERACTION PROBLEMS

The analysis of the interaction between a nuclear EMP and an aero- *
nautical system often results in solving boundary-value problems for the
Maxwell equations. These boundary-value problems can be formulated by

the powerful integral-equation approach which is in no way restricted to

those problem geometries that can be fitted into simple coordinate syctems.

Sec. 1.3.1 will discuss various types of integral equations that have been

employed in the analysis of EMP interaction problems.

In the case where the interaction exhibits a unique direction for
energy transport, the Maxwell equations will degenerate into a simpler

set of coupled partial differential equations involving only one spatial41

variable, the so-called telegraphist's equations for transmission lines.

Sec. 1.3.2 is devoted to the discussion of the transmission-line approach

to EMP interaction problems.

Very often one is concerned with the interaction problem in which

the dimensions of the interaction geometry are much smaller than the

wavelengths of interest. In this case the spatial variati.ons of the

interaction problem are unimportant and the Maxwell equations, after

all spatial coordinates are integrated out, reduce to the Kirchoff

circuit laws. Sec. 1.3.3 will show how the circuit approach can be

applied to the formulation of DIP interaction problems.

1.3.1 INTEGRAL-EQUATION APPROACHI

The integral-equation approach has several advantages which make it

an attractive approach to solving EMP interaction boundary-value problems.

The most noticeable advantage of the approach is its geometrical generality.

This catholicity is precisely what is most needed to handle the complex

system configurations of EMP interaction problems. The second advantage

of the integral-equation approach is its compactness. An integral equa-
tion is a concise statement comprising both the equations of motion of the
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electromAgnetic fields and the initial or boundary conditions. This

compact Less has more than mere economical appeal since, when it comes

to making approximations on the integral equation, the approximations

will be simultaneously compatible with all aspects of the problem. The

third advantage of the integral-equation method is its computability.

The integral equations for electromagnetic boundary-value problems are

linear. They are mathematically equivalent to systems of linear alge-

braic equations. Their properties are well known from linear algebra,

and they can be solved numerically by standard computational methods.

The objective of this section is to present in detail the deriva-

tions of certain general integral equations that have found Lxtensive

application in EMP interaction analysis.

1.3.1.1 Magnetic-Field Integral Equation

The scattering of electromagnetic waves by good conductors is a

• common problem in the analysis of practical situations. A general
mathematical method to treat this type of calculation is therefore of

great practical value. It will be shown below that this scattering

problem can be formulated in terms of a surface integral equation of

the second kind which is particularly suitable for numerical solution.

Consider the situation depicted in Fig. 1. A perfect conductor

of finite extent in free space is illuminated by an incident electro-

magnetic wave which is generated by known sources located either at

finite distances from the conductor or at ifinity. The incident wave

is considered to be time-harmonic with angular frequency w. Its time

variation is given by the time factor eJ.

The quantities of interest in this situation are the induced surface

current and charge densities,J and p,which give rise to a scattered wave.

If the surface of the conductor fits into an orthogonal coordinate system

in which the Helmholtz equation is separable, the scattered wave can be

determined by the well-known method of separation of variables. One need

only expand the scattered wave into a complete set of appropriate eigen-
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'!'

- I
5 scattered wave

Fig. 1. Scattering of an incident electromagnetic wave by a

perfectly conducting body. I
functions of the Helmholtz equation and then determine the expansion

coefficients by matching boundary and asymptotic conditions. But, simple
as this method is, its applicability is severely limited by the stringent *1
demand of equation separability, and only a handful of coordinate systems

can meet this requirement.

By contrast,, the integral-equation approach is of great geometrical

"universality and, in principle, not restricted to a particular coordinate
S~system. The integral equation to be derived presently is an equation for

the induced surface current density. A knowledge of the surface current

density is sufficient to determine the scattered wave. The equation is

called a magnetic-field integral equation because its derivation rests

on an integral representation of the magnetic field.

The time-harmonic fields ý and 1 satisfy the following Maxwell

equations in free space

-+ - h+ 4.

V.H "0 , VXH - w JEE
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7.7 , . .-'--.-- j ~ r



In solving specific problems, it is often expedient to introduce a scalar

potential * and a vector potential A such that

E 1A H V X (2) '

If one imposes on the potentials the Lorentz condition

V.1 + jw - 0 (3)

then one finds from (1) that the potentials individually satisfy the I
Helmholtz equation

2 2 -020 4
(V +k 0 (V2+k A 0 (4))

with
k 2  2 (5)

The source of * turns out to be the electric charge distribution p, and

that of I the electric current distribution 3.
In the interaction problem shown in Fig. 1, one can express the

vector potential is of the scattered wave as a surface integral over its

source, namely, the electric current density I on the surface of the

conductor

A(r) J (r)G(r,r')dS' (6)

fS

where G is a free-space Green's function of the Helmholtz equation (4),

satisfying the outgoing-wave condition at infinity

+- ) W, I -Jkl~r- 'r'1(7

G&r,r ) - Ie(7)

In (6), ' refers to a field point exterior to the conductor; r' refers

to a source point on the conductor's surface denoted by S; and the surface

integral extends over all the source points •' on S. Therefore the total
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magnetic field H in free space, being the sum of the incident and the

scattered magnetic fields, has the following integral representation

VX [1(,')Grr,r )]dS' (8)

4.

where the operator V acts on the field-point position vector r.

An integral equation for the surface current density 3 can be derived

by letting the field po'nt r approach the conductor's surface S. One has

in this limit the well-k4own relation between the tangential component of

the total magnetic field and the surface current density on a perfect

conductor

r r) xjH(r) on S (9)

where l(r) denotes the unit normal vector on S at pointing into free

space. Combining (8) and (9), one obtains an integral equation for 3

1(,r)= r)X Hi(r) + liml Int ('r) XV,.X [3()(r r 1) 1dS 1 (10)
xi r" frS

where r and r' both lie on S and the operator V" acts on the dummy variable

Eq.(i0) cannot be regarded as the final form of the integral equation,

inasmuch as the limiting process indicated therein has yet to be performed.

The limit cannot be evaluated by a simple substitution of r for r" because

the expression so obtained has an infinity in the integrand for r' equal

to r, and is by itself utterly meaningless. However, by carefully analyzing

the behavior of the integral as +" approaches r, one can shown that a well-

defined limit does exist.

Fig. 2 shows a portion of the conductor's surface S containing the

point r. The field point r", exterior to the conductor, can be taken to

approach r along the unit outward normal vector t(+r) at r. When )" is
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Fig. 2. Portion of the conductor's surface S around the point r. The
field point h" is to approach r on S along the unit normal

44vector f~)to S at 'r'. D is a small circular disk on S

centered at r. The source point +' lies on S.

very close to r, the integrand in (10), considered as a function of +', can

be seen to develop a sharp peak at r'- r. For the purpose of evaluating

the surface integral over S, it is expedient to break the integral up into

two parts. One part extends over a small circular disk D centered at r, as

shown in Fig. 2. The other part extends over the remaining surface denoted

by S-D. That is,

J r(r) x V I,, [1( +')G( r", r')3 dS' - + (1 )
SS -D

The integral over D will capture most of the contribution from the peak in

the integrand. Consider first the integral over the disk D

f . f- IJ ") x " [J('r)G(+r",')]dS (12)

D D

When D is sufficiently small, the current density I(W') can be regarded as

uniform throughout D and replaceable by its value I(I) at r. Then, since
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(-r'* - 0) one obtains from (12) tha exprassion

LBecause both D and Ir"- 1r are small, one has, to leading order in Ir"- 'I.

*' '"G¢"-I') - v" " 1 r4 - 4. 13 (14)

Substituting (14) into (13) one obtains

, I (r) (r) (15)

Df

4.4

where QD(r") is simply the solid angle subtended by the disk D at the point

With (15) established, one can proceed to take the limit r" + r.I

Furthermore, since the size of the disk D is arbitrary, one can append to

this operation a second limiting process consisting of letting the radius
of D shrink to 0, that is,

4.limra - lim 4 lim4  + (16)
+f r 0 r +'÷r rD

Under this double limit, one sees that

-).r1 im 1) (17)
SD+O r"+÷r JD

since the sclid angle 0D(r") tends to 2r , and that
FD

limra l J - Ira J n(r) x V xtS(r')C(r,r')dS'
"")*0 r" r S-D D+O S-D

Sf (r) xVx [S(r')G(r r dS
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I
by definition of the Cauchy principal value of a two-dimensional integral

denoted symbolically by the prefix P.

To examine the exact nature of the integrand of (18) at r'r one

recalls that, when the field point r" approaches the point r on the surface

S, as illustrated in Fig. 2, the integrand of the surface integral over S
in (10) develops a sharp peak at r'- r. Furthermore, it has been shown

in (17) that, in the limit r" +r, this peak actually yields a finite

contribution to the integral even when the integral is evaluated only

over a disk of vanishingly small area centered at the point r. This result

clearly indicates that, in the limit r" -r, the peak evolves into a two-

dimensional 6-function situated at r. In fact, the findings from (11)
to (18) can be summed up by the following formula with the symbol P treated

as an operator

lir I (+r) x V,, x [1(r') G (+r,) -r rS ()(2(r. - r)
+r1 +4- n 2r"r (19)r" +r

+ PI(r)xVx [1(r 1) GCr5')(

where r" is to approach r from the outside of the closed surface S, and

6(2) denotes the two-dimensional 6-function. This fo7,nula shows that, in

the limit r" ÷r, the integrand in (10) is the superposition of a 5-function

at r' - r and a background d.signated by the symbol P. It can be shown

that the latter function without the symbol P vanishes as +' approaches
r, and hence the principal-value integral sy.oDol P is not needed in (18)

and the final form of the magnetic-field iLitegral equation is

-3r ) r++ x [1(')xV G('r,cr)dS' -I c) XPi(•) (20)
2 jiSrn n

Of graver concern to the numerical. analyst is the question of unique- I
ness. The magnetic-field integral equation (20) is a nonhomogeneous linear

equation. Therefore, for any given solution of the equation, one can

construct a second solution by adding to the first one a solution of the
homogeneous equation
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S'+ +
-r) × ') xV[(r,r ')]dS' = 0 (21)

2 f
S

Consequently, a necessary condition for (20) to have.a unique solution is
that the solution of (21) be identically zero. The latter condition indeed

holds for almost all values of the frequency. However, there do exist an
infinite number of discrete, real values of k for which (21) has nontrivial

solutions. These values correspond to the frequencies of certain eigen-
modes of the cavity enclosed by the surface S. One can show that, except
at those special k-values, the solution of (20) is indeed unique.

But the numerical analyst is hard hit by the existence of k-values,
albeit discrete, for which the homogeneous equation (21) has nonzero

solutions. In general, a numerical solution of the integral equation (20)

consists of a conversion to a system of linear algebraic equations and a

subsequent matrix inversion. When the frequency cf the incident wave
approaches one of the cavity eigenfrequencies, the matrix to be inverted
becomes progressively close to being singular, resulting in a serious loss

of numerical accuracy. The situation is all the more painful since the

precise distribution of these eigenfrequencies is not known without first

solving the eigenvalue problem (21).

Examples of the application of the magnetic-field integral equation. to

EMP interaction problems can be found in [1 - 51.

• 1.3.1.2 Electric-Field Integral Equation
The problem of the scattering of a monochromatic electromagnetic wave

by a conductor, as depicted in Fig. 1, can be formulated in terms of yet

another equation. This formualtion is generalizable to the case of a
finitely conducting scatterer. It is based on an integral representation

of the electric field. The equation so derived is called an electric-field

integro-differential equation. timn

i dq One can express the electric field E r() of the scattered wave at a
? field point r in terms of the vector potential 18(+r) by eliminating the -:

scalar potential betwezn (2) and (3)
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whr•is the unit dyad. The vector potential •sis a linear functional

I

of the induced surface current density I flowing on the surface S of the

scatterer, as given in (6). Denoting the electric field of the incident:z:eby he untda .. •4t~:). ~ ( 2
wae y ,one obtains the following integral representation for the total

electric field W(r) at a field point r exterior to the scatterer

E(r) =i()_JwV + -L• VV f 1(r )G('r,'r )dS' (23)
(23

k 1
Let the field point r approach the conductor's surface S. In this

limit the integral representation (23) for the electric field does not

require any special treatment, unlike in the case of the integral repre-

sentation (8).for the magnetic field. Although the Green's function G

displays in this limit a linear infinity at - r, this singularity occurs

under a surface integral and can be removed by a simple change of integra-

tion variables. Therefore, for r lying on S, (23) is an integral

representation of the total electric field on the surface of the scatterer.

Note that one should not bring the dyadic operator VV inside the integral

since, after the two differentiations, the integrand would become too

singular at r r.

An integral equation for the induced surface current density I is

derived by imposing the appropriate boundary condition on the total

electric field on the surface of the scatterer. For a perfectly conducting

scatterer, the tangential component of the total electric field on the

surface must vanish. This condition is satisfied if

I (r) xE () - 0 for r on S (24)

Upon substitution of (23) into (24), the following equation results

i•cwil n + +_ vv • l(r')Gcr,r dS' - )n(r) x i) (25)
k 2 S n
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Inasmuch as the differential operators are outside the integral, (25)

is really an integro-differential equation. Its numerical solution is

subject to the same difficulty arising from nonuniqueness as that encountered

j previously with the magnetic-field integral equation. Essentially, unique-

F ness of solution does not hold for (25) whenever the homogeneous equation,

obtained by setting 'E -0, possesses nonzero solutions. This happens at

an infinite set of discrete, real values of k. Each k-value corresponds

to the frequency of an eigenmode of the cavity bounded by the surface S.

These cavity eigenmodes satisfy the Maxwell equations (1) and the boundary

condition nx 0 on S.

Eq.(25) can be generalized to acco-odate a scatterer with less-than-

perfect, albeit good, conductivity. On the surface of a good conductor,

one can impose the surface impedance boundary condition

Se ( i th Z )(r) xE ) (26)

is the scalar surface impedance of the scatterer at Sub-
stituting (23) into (26), one obtains the following integro-differential
equation !

( )I( I- j•r() x (r) x + I( V)G(`r 5r)dS'] (27)
Isnk / S

[ ~(27) |

Its solution is unique since the surface impedance generally has a dissipa-

tive part, and this implies that cavity eigenmodes cannot occur at realf ~frequencies. '
Examples of the application of the electric-field integral equation to

EQ interaction problems can be found in [6-8].

1.3.1.3 Thin-Wire Integral Equation

When the scatterer is a thin wire, the electric field integro-differential

equation becomes practically one-dimensional. In this reduced form it is

P
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applied extensively to the analysis of the wire antennas. The calculation

>1 ~is relatively simple f or the case of a straight thin wire, and can be

performed with a minimum of approximations. The following analysis will

be confined to the straight-wire geometry.

HFig. 3 illustrates a straight wire scatterer. The wire lies along the

y z

j ~~icideW i

Fig. 3. Scattering of an incident electromagnetic wave by a

thin, straight, conducting wire of length Z~ and

z-axis of a cylindrical coordinate system from z- 0 to z- L. It has a

circular cross-section of radius a which, for a thin wire, is much

smaller than both I and the wavelength of the incident wave.

The induced surface current density on the thin wire has mainly 4
an axial component J Z. The circumferential component J 0and the radial

component J3 on the two ends are negligible. In this limit the vector

integral equation (27) simplifies to the following scalar equation for

just the component J3
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Zsiz(o,z) + jw]i + ado' dzJz(:Iz')G(:,z; 01,z')
a0 (28)

- Ei(a,o,z)

where

-jk A•aeln2[I(o- 0')1/2] + (z - z')
I e-

G(O,z; *',z') - , .... ,, ,, , (29)

4i,4a2sin2 [(O-o')/21 + (z-z')2

and the impedance Z is assumed to be uniform over the wire's surface.
S

The integral equation (28) is two-dimensional, and involves the two

coordinates • and z. One can derive from it a one-dimensional integral

equation for the total current I(z) on the wire defined as

V

I(z) 21J ado Jz(o,z) (30)
0

by integrating (28) over 0 from 0 to 21. One then obtains the integral

equation for a thin straight wire

s~~~ ) Zz (
Z'I(z) + +-''1 dz'(z')G(z- Z') -i (Z) (31)

where Z' is the series impedance per unit length of the wire given by

z

a 21r (32)•:, ~ s 2n-'a )"

The kernel G(z- zl) is the definite integral

n1 i e-Jk /2a sin *)2 + (z-Z)292
_G(z-z') = d (33)

JO 41r /(2a sin *) 2 + (a-z')2

-iwhich has only a logarithmic singularity at z- z', and 1 (Z) is the angular

average of E iz(.z), namely
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2w(z J d# 'E'(a,#*z) (34)

The thin-wire integro-differential equation (31) can be converted into

a genuine integral equation by integrating out the differential part

analytically, viz.,

Z'z
dz'I(z')G(z-z') + dz'l(z')sin k(z-z') (

(35) i

C Jkz + C2eikZ + . dz' (z')sin k(z- z')

where C1 and C2 are two arbitrary constants and Z is the impedance of

free space. Eq.(35) is a mixture of a Fredhola and a Volterra integral

equation. The two constants C1 and C2 are determined to satisfy the

following two end conditions for the wire current

1(0) - I(t) - 0 (36)

Eq.(35) is an integral equation for the electric current induced on

"a thin straight wire by an incident electromagnetic wave. If the wire is

a transmitting antenna, the averaged external field E is prescribed on

the surface of the wire. In this case one simply replaces EZ in (35) by

Examples of the application of the thin-wire integral equation can

be found in [9-111.

1.3.1.4 Time-Domain Integral Equations

The integral equations derived so far are applicable to scattering

and radiation calculations in the frequency domain. They describe the

excitation of conductors by time-harmonic sources. In principle, they

can also be used to solve problems involving aperiodic and transient

sources, such as an EMP or pulse generator. This is done through the

powerful technique of the Fourier or Laplace transform. In practice,
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however, a frequency-domain approach to a transient problem necessitates
F }the construction of a solution of the integral equation involved that is

valid over a wide range of frequencies. Sometimes it may prove easier

to formulate and solve the transient problem directly in the time domain

[12]. Indeed, the.frequency-domain integral equations have their time-

domain counterparts.

1.3.1.4.1 Time-Domain Magnetic-Field Integral Equation

[ Consider the scattering of a general electromagnetic wave by a per-

Sfect conductor. as depicted in Fig. 1. The incident wave can have an

Sarbitrary variation in space and time. The electric and magnetic fielas

Sof the scattered wave ;saisfy the time-domain Maxwell equations in free

space outside the conductor

R e 0W- t (37)

VH 0 -V0, VX s C Eat

t These fields can be derived from a scalar potential * and a vector

potential i such that

to V# as P• V X vIs (38)

If the potentials are made to obey the Lorentz condition

V -18 - - 0 (39)
c

where c is the free-space light speed, then the scalar and vector potentials I
individually satisfy the wave equation

12 1 .a' ) Ov2 . ( )s o (40)I~ at c at' I
The retarded solutions of the wave equations (40) are
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a + ,t) . (S ('t- I-I/c1 s )1

- --- ' - - - - -r-"

I'(rt4 - 1 s p(',t -Ir--'I/c) dS' (41)
S

The charge and current densities, p and I, satisfy the continuity equation
B II

- + 0 (43) -

Substituting (42) into (38), one arrives at the following integral repre-

sentation of the scattered magnetic field Ps(r,t) at a point t exterior

to the ecatterer and at time t

AR + I.]I
(rt Vr T) X X 9_(r,,T) dS' (44)

where

and T is the retarded time defined by

t a - Ir r (46)

The operator V' acts on the source point +'. Eq.(44) expresses the

magnetic field of the scattered wave at a point in space and time as a

composition of excitations emanating from individual points of the scat- I
terer's surface at specific retarded times

An integral equation for the surface current density I is obtained

by obserring that, on the surface S of a perfectly conducting scatterer,

the total magnetic field is related to the surface current density at

all times through the equation

(•,t) -r�n(r) X [ti(•,t) + Ps(+,t)] (47)
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In evaluating the scattered magnetic field on S, given in the form of

the integral representation (44), one.must exercise proper caution in

handling the singularity in the integrand, Just as in the derivation of
KIthe magnetic-field integral equation in the frequency domain.
[4.

It can be shown that as the field point r approaches S, the singu-
larity at R- 0 in the second term of the integrand in'(44) is integrable,

and requires no special attention. The singularity in the first term,

however, is more violent. It is in fact of the same type as that in (8).

Consequently, the limiting value of the surface integral (44), as r

approaches S, must be evaluated with the method applied previously to

(10). Taking the limit r + S in (44) one obtains the following time-

domain integral equation for the induced surface current density • on

the scatterer

1 + a ,+,
(+r,~t) d)SSWX (48)

cR2  3T

At first glance, the time-domain magnetic-field integral equation (48)

may appear to bear a close resemblance to its frequency-domain counterpart

(20). This formal simularity, however, is actually quite deceptive. When

it comes to solving the equations, each equation requires a totally differ-

ent procedure. This difference in treatment is the reflection of a basic

difference in the physical contents of the two equations. The frequency-

domain integral equation describes a steady state of the scattering process,

long after all transient effects are damped out. In this equilibrium

condition, the current densities at different points on the scatterer's

surface at one instant of time are closely interrelated. The integral

equation is equivalent to a system of simultaneous linear algebraic

equations. Its solution consi3ts of a matrix inversion. On the other

hand, the time-domain integral equation describes the transient excitation

of the scatterer by an incident wave. Each part of the incident wave,
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I
upon striking the scatterer's surface, creates a disturbance which then

ripples out around the scatterer in the form of surface currents. The

current density at a given point of the scatterer's surface at a given

time is obtained by adding up all the disturbances reaching this point

from all the points of the surface and generated at appropriate earlier
times. A determination of the surface current density, that is to uay,
a solution of the time-domain integral equation, requires only integra-

tion and no matrix inversion. This difference in the solution procedure

is a mathematical consequence of the fact that the frequency-domain

Maxwell equations are of the elliptic type, while the time-domain Maxwell

equations are of the hyperbolic type.

1.3.1.4.2 Time-Domain Electric-Field Integral Equation

Just as in the frequency domain, the time-domain scattering of an

electromagnetic wave by a conductor can also be formulated in terms of

an electric-field integral equation. The starting point of this formula-

tion is an integral representation of the scattered electric field in

the time domain. Using (38), (41) and (42), one can establish the

following integral representation for the scattered electric field
+s +
E (r,t) at a point r exterior to the scatterer and at the time t, in

terms of the retarded values of the surface charge density p and the

surface current density I induced on the scatterer's surface S

+(t) W - l f S'- P(-"') _ _R fdS' L 1(').t
rI j-e 41rJ R 3,r r',T) (49)

S 4 50

Hence, if one now lets the field point r approach the surface S and

imposes the following boundary condition on S

[ii(+,C) + E (r,t) 0 (50)

one arrives at an integro-differential equation involving p and
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[I
tdS

1('r) X r dS') +... r ' T)1
41re R 41rj R aT

Note that, with the operator V kept outside of the integral in (51), the
÷4

limit of the integral as r approaches S can be taken without special ado.

Eq.(51) is equivalent to two scalar equations, but it contains three

unknowns: p and the two components of 1. It must therefore be supple-

mented by the continuity equation (43). The latter can be applied to

eliminate p from (51). Integrating (43) over time, one has

P(r,) -T - dT'V' T') (52)
*LO

One has also assumed that in the infinitely remote past, before the

incident wave reached the scatterer, the scatterer was uncharged. Substi-

tuting (52) into (51), one obtains the following final form of the time-

domain electric-field integro-differential equation for the induced surface

current density IiI

r) 41re R 1ur T14T R3 ~

(10 x 'E'(l+• .tCr) ( 53) 1
n

i ~This is a fearsome-looking equation, but can be handled numerically on the
computer in a straightforward fashion. Again, because of the appearance of

the retarded time T on the left-hand side of the equation, no matrix ]

inversion is involved in the solution.

If one wishes, one can easily extend (53) to cover the case of finite

scatterer conductivity, as was done previously in the frequency domain.
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1.3.1.4.3 Time-Domain Thin-Wire Integral Equetion

The time-domain electric-field integral equation simplifies
considerably when the scatterer is a thin straight wire. The thin-wire
geometry makes it possible to go over from a two-dimensional problem to

a one-dimensional one. Instead of taking the thin-wire limit of (53), 1

it is easier to derive the time-domain thin-wire integral equation

directly from the Maxwell equations.

From (38) and the Lorentz condition (39) one finds that

S 2 (rV)V _-t 1- -as2
-- - r~ (54)

at

c at

With A given by (42) and the boundary condition

SE (rt) + rt - 0 (55)

imposed on the surface of the wire, one obtains the following time-domain

thin-wire integro-differential equation for the total axial current I

at' (z, (-z) c2 E(z,t) (56)
a c 2( at" - a

where the wire is taken to stretch from z- 0 to z- Z. The kernel is

defined by

IT

g(z- z') 4 (57) 2,041r /(2a sin 0) 2 + (z-z') 2

which has a logarithmic singularity at z- z', and the averaged E is defined

in the same way as (34).

Examples of the application of time-domain integral equations can be

found 'in [13- 16].
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1.3.1.5 Aperture-Penetration Integral Equation

The need for calculating electromagnetic penetration throughV apertures arises frequently in the analysis of EMP interaction. The

tei typical configuration of aperture penetration is illustrated in Fig. 4.

II:• i ~ incidonttin

aperture A h

and enloses cavit. The avity penavoty h xeiro h hl

..... .... I
CO ~ ~ .~......I..

4W

Fig. 4. Penetration of an incident electromagnetic wave through an

aperture into the interior of a~conducting body.

A shell made of perfectly conducting material is situated in free space,

and encloses a cavity. The cavity opens onto the exterior of the shell

by way of an aperture A. Let an electromagnetic wave be incident on the

aperture from outside the shell. It is required to calculate the electro-

magnetic fields inside the cavity as a result of aperture penetration.

Suppose first the aperture A is completely plugged up by a perfectly-

conducting, infinitely-thin cover. This cover therefore forms with the

outer surface of the shell a closed, perfectly-conducting surface S+,

2, while it forms with the cavity wall another closed, perfectly-conducting

surface S The incident electromagnetic wave, assumed time-harmonic with

time factor e , is scattered by the external, closed surface S+. In the
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aperture-penetration problem, the so"ution of zhis auxiliary scattering

problem is assumed known.

Let the total external fields be

+ t i Ct () i C) (58)
extr BC (rt rc rL B r

and the total internal fields be

Eit r) = , (59)

where are the short-circuited fields with the aperture completely
plugged up by a perfectly-conducting cover. One finds that [17]

4i(r) - i• t(rrh r . ') X1 (r')]dS' (60)

erewith r e gterior to S+a and that

12() = jwe 'r n(r,r ). (P) x i()]dS' (61)

with rinterior to S.The external dydcGreen's function +r xt_ charac-

._+ terizes the region exterior to S+, and the Internal dyadic Green's

function nt characterizes the region interior to S_. They both satisfymnt
the differential equation

(V x V x - k2 ¢L , -•~ r¢ r r (62),

and the following so-called boundary condition of the second kind,"namely,

t (r) x vx r Ctttr) -o otn
n 1xt 0 or +r on S+

(63)
X + +

n(t) xr xr int(r,r') - U for r on S_
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*1 I

The advantage of this boundary-condition assignment is that the tangential
comonnt of •1and •2 on the surfaces S+ and S now depend only on the

tangential components of k and t2"

theThe aperture-penetration integral equation is derived by matching

the tangential components of the external and internal electromagnetic

fields across the aperture A. The boundary conditions at A are

X -n (r) x E2 (r) (64)
1 2

l() X + Hi - -n r H (r) (65)
2

The tangential component 1 sc is identically zero. Substituting (60),

(61) and (64) into (65) and noting the relationtn -ý-2 on A, one finally

arrives at the aperture-penetration integral equation in the form

J, r~ rext(+r'-"') +4I'int(r' )1 1n

1 A
(r X Ax 'r (66)

It must be remarked that the integrand in (66) is actually non-

integrable. The reason is that the Green's functions r' and r both

contain double derivatives of the inverse distance r-•' 1-l. In order to
+ 4arrive at a meaningful limit as r tends to r', it is necessary to bring

the differential operators outside the integral, and (66) is to be inter-

preted in this sense. Eq.(66) is therefore an integro-differential
equation for the tangential aperture electric fieldnl X t. Its solution

can be used to calculate the total external and internal fields. It must

be noted that, before one can apply the aperture-penetration equation (66)

to a specific problem, one has first to determine the three quantities

Asc, rext and rint appearing therein for the aperture geometry concerned.

Very often, this determination is an arduous task in itself.

SHowever, when the aperture A lies in an infinite, conducting, thin

plane screen between two half-spaces, (66) can be written out explicitly
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in simple form. The infinite plane screen geometry, although an outright

idealization, is actually a good approximation to many aperture configura-

tions encountered in practice. Let the infinite plane screen be the

x-y plane in a rectangular coordinate system, as shown in Fig. 5. Let

4z

SA

*:pane sawn Y

Fig. 5. Penetration of an incident electromagnetic wave through an

aperture in a conducting, infinite, plane screen.

the incident electromagnetic wave impinge on the aperture A in the plane

scr'een from the upper half-space z > 0. Therefore, the exterior region I
in this geometry is the upper half-space z > 0, and the interior region

the lower half-space z < 0. The unit normal vector--t n becomes simply • .
' 1 1

The dyadic Green's function for a half-space satisfying the boundary

condition of the second kind can be expressed in closed form

- ( \[G( 4 '
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where G is the free-5pace Green's function given by (7) and" is the image

of r'. For the external Green's function? one chooses positive z

and z'. For the internal Green's function int, one chooses negative z

and z'. Upon substitution of (67) into (66), the following equation
S~results

4jowl X + - V Vd'yGxy 'y~ 1('Y~H Az k '
- Xt c (X,y) (68)

where V is the tangential gradient operator

t

Vt (69)

If Note that in (68) all differential operators occurring in the dyadic

Green's functions have been taken out of the integral to ensure integra-

bility, as has been discussed previously.

It must be pointed out that (66) is not the only possible integral-

equation formulation of the aperture-penetration problem, although it is

certainly one of the most general. Other versions do exist, especially

when one restricts oneself to specific aperture geometries. Nevertheless,

these different versions all share a common characteristic, in that they

all select certain field quantities at the aperture opening as the unknowns

of the problem, be they field components, their various derivatives or

appropriate scalar potentials. Examples of the application of integral

equations to the solution of aperturp-p..tration problems can be found

in [18- 21].

1.3.1.6 Intersecting Cylinders

Intersecting cylinders have been used to model many aeronautical

systems for EMP interaction calculations. The most common applications of

the model pertain to aircraft and satellites. In this section the basic
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I'
formulation of the tvo-jutersecting-cylindor problem is discussed, while
all relevant results are relegated to Part 2 of this document.

1.3.1.6.1 Orthoaonally Intersecting, Electrically Thin (ka . 0.1) Cylinders

In Fig. 6 are shown two intersecting rods iumersed In a time-harmuic

12Z t

tZ t 
x

) I'

I t

I 1

1 201

z [ ~I3j , a

U zO

Fig. 6. Two orthogonally intersecting, electrically thin

(ka 1, ka 3 :S 0.1) cylinders in a time-harmonic

plane wave. t lies in the yz-plane.

plane wave whose electric field components are given by I j
Ei-isin , (on horizontal wire) (z (70)

i E •icos o sin e0 • (on vertical wire) '1
92
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'elie total ax'-l currents induced on the four sections of the rods are

denoted by I l(-), I2z(z), I3x ) and I4x) which satisfy cooupled integral

equations subject to boundary conditions at the four ends and certain

appropriate conditions at the junction. The boundary conditions at the

ends of the four &rms are

I Z(-h 1 )- I 2 (h2 ) - I3x(-il) - I4x(•2) - 0 (71)

The conditions at the junction must relate the currents and the charges

per unit length in the four arms. Strictly, the conditions must involve

these quantities at electrically short distances from the junction, where

the currents and charges are still rotationally symmetric. However, since

with ka ! 0.1 the electrical surface area of the junction region is very

small (of the order (ka)2 I< 0.01), its shape is iaterial and the total

charge on its surface is negligible. Accordingly, no significant error

is introduced insofar as currents and charges at electrically very small

distances away from the junction are concerned, if it is assumed that

each arm and itz rotationally symetric current and charge per unit length

"extend to the junction point (x- z- 0) as if concentrated along the axes

of the conductors. The junction conditions can then be imposed at this

point. For a vertical conductor with radius a1 and a horizontal conductor

with radius a 3 , the junction conditions include the Kirchhoff condition on

the currents [22]

I Iz (0) - I2z(0) + I3x(O) L 14 x(O) - 0 (72)

and the following three conditions on the charges q per unit length [23]

ql (O)W1 , q2 (O)T 2 - q3 O)y 3 - q4 (O)W4  (73)

where, for conductors at least a quarts; wavelength long,

T 1 T2  2[n(2/ka) 0.5772], T3 -¥ - 2[tn(2/ka3) - 0.5772] (74)

93 I
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N~ote that these parameters are independent of the lengths of the conductors.

For shorter conductors, the length is of importance and (
T 1 W -T 2 w L,,n(Y 1,'•h2/)a '1 3 a I4 - 2 ,n(' L1," 2 /a 3 ) (75) !

When the radii are equal (a 1 - a 3 -a)# T '2 3 in (73) and this

reduces to the equality of charges per unit length.

The use of thin-cylinder theory is an acceptable approximation only J
when the following inequalities are satisfied

ka 1 << l; a I << hit a 1 << h 2

ka< ; a< i <t(76) !

ka 3 "l; a 3 «L, 3 92

The required coupled integral equations for Ix and I are readily

derived from the following one-dimensional boundary conditious on the

surface of the conductors [24,25]

E (z) w Eti - 90(z)/Dz - JuA W(z) 0, -h 1 _ z (h77

z z z2 (77)"

E(x) Ex - 3(x)/Dx - JwAx(x) - 0, -11 -:5 x I t2

When the integrals for the scalar potential 0 and the components of the

vector potential I are substituted in (77), the following pair of simul-

xtaneous integral equations is obtained for the unknown currents I(x()

and I (z)

h2 12 (Z')K(z,z')dz' - q(z')K(z,z')dz' + q(x')K(z-x,)dx

" -(J4n/wp)E (z) (78)
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I
Ik (x')(x.x')dx' q(x')t(x,x')dx' + q(z')K(xsz')dz]-L1k -h1

-(Jw ) (109)

where E (z) and are given in (70). Note that q(z) - (J/w)aI (z)/az
and q(x) - (j/w)DI (x)/ax. The kernels are defined as follows:

x

IK(z,z') - a]p(-JkR )/R5 , K(xx') - exp(-JkRx)/Rx

K(zx') exp(-JkR z)/Rc , K(xz') i exp(-JkRc)/R cX

with

Itz [(z-z) 2 + all]R [(X-X') 2 + a 3]½

RcZ - [z +31 +a 31 x W [x +Z 2+a]½fu

Eqs.(78) and (79) are to be solved for Iz(z) and 1x() subject to the four
end conditions in (71) and the four junction conditions in (72) and (73).

Analytical solutions of these equations have been obtained when
aaa3 -a for two different cases, namely, (a) the case of a normally
incident field with the electric vector parallel to the vertical conductor
and arbitrary arm lengths [26], and (b) the case of a general incident field
and equal arm lengths [27]. More general cases than these two are readily
formulated and evaluated by analytical or numerical methods. Approximate

currents and charges have been calculated for a wide range of arm lengths
in [24,25,27]. Measured currents and charges are in [28]. Details of
the analytic solution and explicit formulas for the coefficients are
given in [29].

1.3.1.6.2 Non-Orthogonally Intersecting, .Electrically Thin (ka -. 0.1)

Cylinders

The determination of the currents and charges on the surfaces qf
conductors intersecting at angles A other than 90, as shown in Fig. 7,

L95
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Az

Ilax

Fig. 7. Swept-wing thin-wire cross.

can be accomplished for electrically thin cylinders by a generalization
of the analytical procedure described for orthogonal conductors. All of
the thin-cylinder conditions previously imposed for A - 90* must be
satisfied and, In addition. a restriction of the angle A of intersec~tion
must be enforced. This is needed in order to keep the junction region
electrically small enough to preserve the validity of the assumption
that the total charge on its surfaces is negligible. The added condi-
tion isj 

o n A >> k

When A - 90'. this reduces to the previously imposed condition ka << 1.

The integral equations for the currents in the swept-wing configure-
tion shown In Fig. 7 are derived in the same manner as those for the
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orthogonal cross but several additional terms and integral* occur, since

the crossed conductors are nov coupled inductively as wvel as capacitively.

In order to permit the ready correlation with the equations for the

orthogonal cross, the notation shown in Fig. 7 is used. As before, the

vertical member extends from z - -h 1 to a - h2 with the junction at the

origin. The arms are taken to be equal and of length £ with the variable

a ranging from s - -Z to s - 0 along the left arm and from sa- 0 to a - L

along the right arm. Note that when A - 90, a becomes x and the entire

t notation reduces to that of the orthogonal cross.

The boundary conditions requiring the vanishing of the tangential

component of the electric field on the surfaces of the conductors, each

with radius a, now have the form

E(W) - E " a(z)/az - JWA (z) " 0, - h:i_ z !Lh2  (82)

ii

+Es(s)'=.- Ecos A- •3)/s- J3s)-0O, -is ss. •=0 (83)

for a normally incident field, %E z . A consequence of syetry is

that the currents and charges, and the vector and scalar potentials on

the two side arms satisfy the following relations:

1 3 (-a) - I 4s (s), q3 (s) = q4 (-s)

(85)
A 3s(-a) - A 4s(s), Y3(-8) •4(s)

Hence, it is necessary to detsimine only Ilz(z), 12z(Z), and I 4(s). With

the relations (85), the vector and scalar potentials in (82) are

I IAs(S = u(~l) I z(S')K(z,z')ds' + 2 coos I •s(e')K4,s10o (86)
•.-hI f.
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O(z) (1/41re) J q(z')K(Z,z')dzl + 2 Jq(s')K(z,s',A)ds'f (87)-h f

where
-J kRz -JkRz ,

K~z~z') =e_.. K(Z,s',A) -e

Rz (88)

R- (z [(1-Z')2 + a2] R - [z2+s,2 2zs'cos A + a2]

Similarly, ia (84)

a 
rI,.IA& I' 

{

(a) 0 1 (s')[(s,s1 + K(s,s',A)cos 2A]ds' (

+ cos A I (z')K()sz',"A)dz' 9

-1

0r
4 ()" ( i) WOO q(s')[K(s,s') + K(s,s',A)Ids'

+ f q(z')K(s,z',A)dz'(
-hI,

where
e-j Irn e -.lkRs '8 -Jk lrszI't 

•

K(s,s') e K(s,s',A) - e K(s,z',A) e RI .1
R8 = [(s-s')2 + aZ (

(91)

Rsa + a,2 2ss'cos 2A + a2l•

z [t2 + Z - 2jsIz'cos A + a2]½

When (86)- (90) are substituted in (82) and (84), the following simuwl-

taneous integral equations for the currents and charges are obtained after /;

98

I-'+• 

+ k

"" -

4- 

' 

."+A+ 

• 

n'



II

-- integration by parts

F (p] (')ha' - k2  (z')]KC(zz')dz' - F2 (zA) - F3 (z) - F4 (z,A)

i z z z, F4
2V • (92)

S[ (2I(s')/as8? + k2I (s'][K(s,s - K(s,s',A)]ds' - F2 (s,A) - F3 (s,A)

- F 4(s,A) - F (s,A) - -4k Eicos A (93)
45 WVi z

where

SF2 (zA) - 2jw(a/az) q(s')K(z,s',A)ds'
0

jw[q(h2 )K(z,h2 ) - q(-h )K(z,-h 1 )] (94)

F4 (z,A) - 2k 2cos A I2s(')K(z,s',A)ds'

and hqz)Ksz

F2 (sA) - Jy(8/3s) f q(Z')K(s,'zA)dz'

Sh 1IF 3(6,A) " 2jwq(Y,)[K(s,•.Z) - stA]

h2  (95)

F4 (sA) - k2Cos A I I (z')K(s,z',A)dz'

F5 (sA) k2(1+cos 2A) s(s,)K(s.sf,A)ds,

50

Zero-order current and charge distributions for any A and normally

incident fields have been obtained in [30] by solving (92) and (93) with

ithe end conditions (71) and the junction conditions (72) and (73).
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1.3.2 TRANSMISSION-LINE APPROACH

This section presents the formulation and solutiou of the basic

differential equations describing the EMP induced voltages and

currents on a group of conductors forming a transmission line.

Throughout this section the cross-sectional dimensions of the

transmission line are assumed to be small compared with a wavelength.

The propagation of a pure TEM mode on a two-conductor lipe is

first discussed. Its simple concepts are then generalizedto a
multiconductor line. Energ& propagation on a multiconducýor line

can be described by the pr( agation of a number of independent field

configurations or modes.

Previous efforts in applying transmission-line theory to EMP

problems have been restricted to simple transmission-line configura- j

tions, such as two cascaded sections or a simple branching of lines.

Recently, work has begun on the development of a computer code for
analyzing a network of arbitrarily interconnected transmission lines

(both single and multiconductor lines). In this work a large matrix
equation is derived for all of the unknown currents at each of the

junctions, or nodes, of the transmission-line network, and then these

currents are determined b4matAiix inversion. This process permits

the inclusion of much mofp complex types of transmission-line networks,

such as those having closed1 loops, than what has been previously

analyzed.

In the case of lossy conductors an axial component of electric I
field exists in the vicinity of the conductors, so that propagation

is only nearly TEM, or quasi-TEM. Deviation from strict TEN propa-

gation also occurs when the dielectric medium, although homogeneous
in the direction of propagation, displays inhomogeneous properties 4

in Lhe transverse plane. These departures from the ideal case can

introduce severe analytical difficulties in solving transmission-

line problems.
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1.3.2.1 The Two-Conductor Line

"Consider Fig. 8 in which the conductor axes of a uniform trans-

mission line are parallel to the z-axis of a rectangular coordinate.7 system. Assume the conductors to be loss-less and embedded in a

"homogeneous isotropic dielectric with constitutive parameters c, V, 0.

The integral form of one of Maxwell's equations gives

i .d - sp j YA.1dA (96)

A

where C is a curve enclosing the area A, and s - jw on the ju)-axis of

tbe complex frequency s-plane. If A lies completely in a rlane

transverse to the z-axis, then the fact that H is transverse implies

that

E dP - 0 (97)

C

wrxich, in turn, implies that in any transverse plane, • can be

expressed as the n gaitj.e-$rudient of a scalar potential 4* . .•: ,.•,,- • .

E Vt \ +_ (98)

X

z

Fig. 8. Two-conductor line.
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Since V-t 0, (98) becomes

tx2 2

ax ay

That is, in any transverse plane 0 satisfies a two-dimensional Laplace's

equation; hence, in any transverse plane I appears at any instant as

an electrostatic field. Such a field must originate and terminate on

electric charges, and since there are none in the dielectric, they
must appear on the conductors.

Differentiating (99) first with respect to x and then y and adding

the results, one obtains

2+ 2-+
a2E + a . o (100).

2+ 2+which, together with V 4E y E, implies

a 2 +y (101)

az22

where y s•C(a+se). The solution of (101) is

S(x,y;s)e-yz + 2 (x,y;s)eyZ (102)

where iit2 are arbitrary vector functions derivable from scalar

potentials satisfying the two-dimensional Laplace equation (99). If

Zd denotes the dielectric-space impedance

z Y C +s (103)

then

- Y mYdz xE+ (104)

102)

""•, " ,": - : , . .. • : , ' ' , " . ' • . .. • ___.c•_.._ -z'• ... ..... - .s .':

• : ? .:•I', 'V •:"?. - : '. - -" 
-. J, 

. . . ......



with upper and lower signs for forward and back waves, respectively.

The charge Q' per unit length bounded by the electric field is

- C'V (105)

iii where C' is the capacitance per unit length between conductors. The
current diverted through the dielectric is

I' V G'V (106)
d

where G' is the leakage conductance per unit length. Finally, the

magnetic intensity linking the conductors induces a counter-emf in

series with the lii- given by

VL' - s L'I (107)

where L' is the inductance per unit length represented by the magnetic

flux linkages, and I is the line current.

In Sec. 1.3.2.4 the line parameters C', G' and L' will be discussed.

1.3.2.1.1 Line Excitation

A transmission line may be excited by an EMP field in a variety

of ways. In the simplest case the line is in "free space" (i.e., far

from other objects compared to its crosi-sectional dimensions) and is

excited by an electromagnetic wave. It may be situated above ground

so distant that its propagation characteristics are unaffected by

the ground parameters, but close enough that it is exposed to both

incident and ground-reflected components of an EMP. It may be within

the interior of a coaxial cable, which may have a solid shield or at braided shield for its outer conductor. In the latter case fields

may be coupled locally into a line by incomplete shielding at cable

connectors, at flanges joining sections of solid conduit enclosing

the line, or at shield apertures that are required for other functions.
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In all cas" it is convenient to consider the incident field to i
be resolved into components transverse to the line and those parallel

to it. The transverse components may be due to coupling from another

distant line. The axial components of magnetic and electric field

affect the line differently. The axial magnetic component induces

currents that circulate around the peripheries of the conductors but
produce no axial transmission line current. The axial electric field,

on the other hand. induces antenna-mode currents on the conductors1

which for the most part do not flow through the line terminations.
Uowever, because of the physical separation of the line conductors,

there is generally a small difference in the excitation of the indi-

vidual conductors by an axial electric field,which induces excitation

sources in series with the line. This difference is entirely accounted
for (via Faraday's induction law) by the transverse magnetic field.

1.3.2.1.2 Line Differential Equations

Two fundamental laws underlie the derivation of the line equations:

Faraday's law (96) and the law of current continuity (43).

Fig. 9 represents a small increment of a two-conductor line.

Although represented here as two conductors of finite cross section,

z!

- H

•1g. 9. Small increment of a two-conductor lie.
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it should be noted that one conductor could be an "infinite" ground

plane. Alternatively, one conductor could be enclosed In the other,

as in a coaxial line. To develop expressions for the line excitation ,

for the special case of a two-conductor line. we begin by applyinB

(96) to the contour C in Fig. 9. The right member of (96) in propor7

tional to the magnetic flux 0 through the area A enclosed by C. The

magnetic field ý is positive when directed as the translation. of a

right-hand screw turned clockwise. Thus, -0 is positive when directed

in the positive y direction.

The total magnetic flux linking the conductors has two sources:

the incident magnetic field 9 and the magnetic field due to the

transmission line current.

Antenna-mods currents Icl and I are induced by the axial

I electric field. The total currents I1 and 12 in the conductors
are, respectively,

11 - + Itc
Si2 _ •+ It ,: (108)

Performing the integration indicated in the left-hand side of
(96) we have

~.dt"- - V(Z) + 0 + V(z+ ak) + 0 - V(z+Az) - V(z) - AV (109)

the integration along the conductors contributing nothing since I'dt - 0

at the surface of losslsgu conductors.

"For the two components of magnetic flux per unit length we

introduce O• and 01 with1* "- L'If, *••-L,. (110)

where L is a constant measured in henries, and H is the component
of the incident magnetic field perpendicular to the plane containing
the axes of two conductors of the line.

105

S " •• .•,. -Z • • ' % '',. .. ... _**° Z. .. . .. .... • • =• :•-'.• - '' ' _ _t• = '-_ , '::•"• L*."-. .... .. .. ... .



The total flux in the increment Az is then given by .1
O'A,- (L'I L Lii)A Z1

Substituting (109) and (111) in (96), dividing by Ax and passing

to the limit, we obtain j
av + .L'I - sL y (112)

which is the first equation for the transmission line voltage and

current in the s-domain.

To derive the second line equation we integrate the continuity )
equation and obtain (see Fig. 9)

Al + IýAz + sW'Az a 0

Rearranging, dividing by Ax and passing to the limit, we obtain

+ - SQ (113)

which becomes, with the aid of (106),

XI- + G'V =-sQ' (114)

The charge Q' has two sources: the TEM potential difference

between conductors and the transverse impressed electric field. Calling

these two charges Q' and Qi we have

Qv o C'V (rom line voltage V)

i C:Ei (from incident electric field E
perpendicular to the axas of conductors)

i
where C is a constant of proportionality measured in farads. I. I
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Thus, the second Line equebWp becames

R1 + (G'+,C')V - - sCi (16)
*1z

The deter•ination of the li"n parameters L', C'. C', and tbe cowling

parimters Li and C will be diedassec, in Sec. 1.3.2.4.

Finite conductivity of the line codductors affects the behavior of

the line in two ways: it caAuse "sbqht, modifications in the line

parameters, effects which are usually ignored at high frequencies; and

it results in additional attenuatlon waves on the line, thus affecting

Sthe value of the propagation cons tant: For the case of the two-conductor
1ine, the second effect can be Incorporated into the line equations
without difficulty. C-

Eqs. (112) and (116) are the basLUtransaission line equ&tions in( the s-domain and they may be sumariz* in the folio', Ing convenient

form:

S, + V 1t - V'(m

31 + +Y'V -

wh ere v' and 1( are the pit-sait-leugth sources to denote respec-

tively the right-hand sides of (112, and (116), and Z' and Y' are the

per-unit-length Impedance and admi;ane of the line given by Z'I R'+sL' and Y' - G'+sC'. Uere, .' .is the line resiotance to be

discussed in See. 1.3.2.4.

Recently, a new set of trLaz# on-line equations has been

proposed, which incorporates..e effect of the Uant •.od currents

[31]. Let II and 12 be the total currents on the two conductors and

let Id and I be defined bj ,.,. ,

d 2 1), 1 - ('2 + Y
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It can be shown that for the case of an incident plans wave one has [311

-- d - -- sL'G
dId

--+ 1c'v --. ' •.I + SO 04

where Q - - (1/s)(d/dz)I , h and a are given by (see Fig. 10)

C (120),, S,.o[, ÷ I • )]
a= C' (21r0)- Earccuch(2b/h) -arccsch(2a/h)]

for two conductors of circular cross-sactions with radii a, b.

There are two points of paramount importance about (119). First,

if one sets

I - Id(+ac (121)

Fig. 10. Two-wire line of unequal radii.
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wher&'Iis the line current of (117). then (119) reduacas to (117).
Sacoidly, the "c -mn-mods" (or antenna-meod) current defined by
(118) is equal in magnitude ad direction on both conductors. and

henc is, to o at the terminating impedaai of a line of tw equal-

I length conduct rs. In this case, I an d will have the sam and

comtAIon. (Note that me may define a co -oe currant in such
a way that it will not appear in (119).) This means that, as far as
the c ants at the terminating impedances are concerned, one may

Suse (7 ) instead of (119). On the other hand, if one is interested

in the total currents at other points along the line's conductors

or theacas. where th6 lim's conductors are of unequal length, one

should resort to (119).

1.3.2.2 Multiconductor Lines asd Cables

Fig.. U depicts a multiconductor transmission line embedded in a

homogeneous isotropic diectric. For this cue, the discussion in

See. 1.3.2.1 up to and including (104) applies exactly here, except

that we are noa thinking in term of (N + 1) conductors rather than
twoy . The reaons for selecting a general line of (N4+ 1) condsictors

(rather than N) are two: first, among (N1+1) conductors there are

only N Independent potential differences; second, the total T•L

current flowing in any cross section of the line must be zero, so

/

(tX

(N+I)

Fig, 11 (N+ l)-conductor line.
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that one of the currents may be expressed as a linear sum of the

r•mining V, implying the axistence of only N independent currents. 3
Thus, the b0avior of an 0(+ l)-conductor lint is characteried by
N inlapeadeat potentials and I Ljldpenent Lcurrents. Such a line

may then be refecred to as an N-lins. According to this definition

the conventional two-conductor line is a 1-line characterized by a

single potential difference and a single independent vasua of curtent.

Inst*ad of speaking of potential differences it is convenient

"to choose one conductor as the reference or zero-potential conductor. i
The potential of any conductor is then its potential with respect to

the reference or comon conductor. When necessary, the reference

conductor is called the "zeroth" conductor. Conductors other than

the common conductor, when forced to zero potential, are said to

be "grounded."

The potentials of the respective N conductors are denoted by

the vector (Vn ). As before, in the transverse plane the potential *
satisfies Laplace's equation and the conductors are equipotentials.

Consequently, electric charges OQ (for n-1, . .. , N) exist on the

conductor surfaces, and standard theory relates these charges to

the potentials by (32]

N
,- . C V n-l,...,N (122)1nmm a

or, in matrix notation,

(q•> - (C' )(Vm) (123)

The quantities C' are Haxwell's coefficients of capacitance

with the falloing properties (33,343

CL ?. 0 for every a

C'< 0 for every ma n (124)

C' - C' for every nm
ns 1n
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The quantities CL are defined fundamentally as follows. Let Vk

be different from xero, while V -0, - 0. k; that is, suppose all

conductors are grounded excopt the kth. Then (123) bopomas

CI% . k, n(125)

Evaluatpan of the C' for specific configurations will ba discussed.,
in Chap. 2.4.

Because stedy current flow in conductors obeys Laplace's equation
wilth equipotential conditions on loaslass conductors, ans' ouso results

apply to the currents flowing betwer. conductors in a lossy dielectric,

namely

(1d) " (G')(Vr) (126)
n i

where Iý ie the total current per unit length in the dielectric leaving
the nth wire, and C' are coefficients of conductance with the properties

unm

G' > 0 for every n
na
G• < 0 for every n 0 m (127)

G' - G' for every n,m

Furthermore, if Vm -O for m 0 k, then (126) gives

Gnk - /V, - -d . . .N, (128)

Finally, the magnetic flux 0' linking the nth conductor and ground

is the resultant of currents flowing in the N• independent conductors

' - )(Ia) (129)

rL

: 111



where the L;M, all positive or zero, are the line coefficients of

inductance. Furthermore, the individual inductance coefficients are

given by, with currents on all c€nductors being zero except the kth,

Lý- OL I, n-l,..., N (130)
n

To derive the line equations for the total line voltage, one my

visualize a generalization of Fig. 9 and then considers .only the uth

and reference conductors. The path C in Fig. 9 may be any path whose

contour Is confined to the z- and (x+ Az)-planes and tangent to the nth

and reference conductors. Following the sae procedure that leads from

(109) to (117) we get, in matrix form,

L (V) + s(L' (I ) -a(L(i) )H W
r n n+ m n vL

(131),

TZ (I~~ + (G' ) + a (C;)) (Vm U- )ELi

1.3.2.2.1 Multiconductor Line With Lqssy Conductors

In general, conductor losses depend on the distribution of current
around the conductor peripheries. When the conductors are cylinders

of small radii compared to conductor spacings, an extra term (RI )(aId
Urn m

may be added to the left member of the first equation of (131), where

(R') is a diagbnal matrix in which R' is the resistance (A/m) of the

nth conductor, readily evaluated by standard means [32]. At frequencies

sufficiently high that the conductor skin depth is small compared to

the conductor radius of curvature, the effect of conductor losses can 4

be accounted for by finding the peripheral current distributions on

all conductors (assumed temporarily lossless) for a given current j
vector, and integrating the loss over all conductors. The attenuation

constant representing these losses is then determined from

Z1 n(l -Wc/o (132) ~
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where a, is the part of the attenuation constant due to conductor louses

(neper/m); W is the total conductor power loss in one meter of line,

and VI is the total transmitted power at the point of conductor loss

evaluation. An alternative expression is

SdW0Ud i 0

"" 2Wo dz (13)

Where the approximations uded above are not justified, effective

conductor resistance must be determined by complicatqd boundary-value

procedures, generally requiring numerical analysis.

Further discussion on this subject appears in Sec. 1.3.2.4.11.3.2.2.2 Multiconductor Transmission Line Modes

To solve a multiconductor transmission-line problem (131) subject

to appropriate boundary (or load) conditions at the ends of the trans-

mission line, one may first obtain the source-free solutions on the

multiconductor line by solving the homogeneous version of (131) and

one may then construct a particular solution with the excitation sourcesIf
and loads present.

Let

f -(Z') s(LI)
: (G +(134)(Y (GI ) -G',)+ sC•r !

to be the series impedance-per-unit length and shunt admittance-per-

unit-length matrices of the line. With no sources, (131) becomes
ti

_(V )+ )(Im) (3 1
.•. (135)

a:nn(I )+(Y' )(V ) 03z Un m +m'
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from which onz obtains

•2

S(Ia) - C(Y' )(Z' )(Id)S( (136)I
•2

3Z2 Vn (Z.) (Ym) (VI)

These equations seem difficult to solve at first, since the propa-.I

gation matrices (YL)(ZL) and (ZL)(yL) are full matrices. It is

possible, however, to diagonalize the propagation matrices by a

transformation matrix (T U) consisting of the eigenvectors of the

matrix (YT)(Z m), i.e.,

CTm)-l(Y•) (z') (am) - (_Y.)2 (137)

where (ynn)2 is a diagonal matrix with elements equal to the corres-

ponding eigenvalues.

Because (W ) and (Ynm) are symmetric, the matrix (Z'm)(Y' ) can

also be diagonalized by TrUm, viz.,

(T' )T(ZL) (Ym) (T. )T " )2 (138)

nm ri m rmnn

where the superscript T denotes the transpose.

Let

(in) " (Tm)-1(In), (vn) - (T.m)'(Vn) (139)

where in and vn represent the modal amplitudes of the nth eigenmode.

Then (136) can be put in the form

a2 2 i) = (Y ) 2 (in)

Z n(140)

a 2 (vn) - ( 2n )(vI)
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,i For a straight section of multiwire line consisting of perfect

conductors immersed in a simple medium, the propagation matrix

(Y )(nZ') has identical eigenvalues. in the case of an N-wire line

plus a reference conductor, this matrix can be written as

21
S ' (o+ se)(nm) nm

where (6nm) is the unit matrix. This yields the value of y as in (101).

For this degenerate but extremely important case, any linearly indepen-'

dent set of modes may be used for describing the behavior of the

multiconductor transmission line.

In the general case, however, the eigenvalues of the propagation f
matrix will be different. This occurs when the transmission-line

cross section consists of a number of dielectrics with different

parameters. When this is the case, the eigenvectors of (Y' )(Z'
2 nm. . nmcorresponding to a particular eigenvalue y 2 are uniquely determined

(except for a scale factor) and are subsequently used to define the

transformation matrix (T)" nII
1.3.2.2.3 Load Voltage and Current Responses

The voltage and current modes derived in the last section can .

be used to calculate the currents on a driven multiconductor trans- '

mission line. Consider the case of an (N+l)-wire transmission line,

as illustrated in Fig. 12. At a position zs there are two vector

sources (V)) and (I6S)n each consisting of N generators. For this
n n* line, there are N independent modes which propagate and contribute

to the total current on the line. At each end of the transmission

line there is a matrix load impedance (Z ) terminating the

transmission line. The diagonal elements Z correspond to

the value of the impedance between the N wires and the reference

conductor, and the off-diagonal terms Z correspond ;o the

impedance elements between the ith and Jti cGnductor.
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On a section of multiconduci'or line with no sources the total
current and voltage can be viewecl as a combination of positive and

negative traveling modes which must satisfy (140), the solution of

which is given by

-(~z(yt)zI
(i)en) = (An) + e (Bn ) (4(142)

(Y=x) z (ynnl z

(vn) e (C) + e (D)
I

where (A), (B), (C.) and (Dn) are N-vectors which must be determined

from the load and excitation conditions.

+I
load 2 Wad

- ~d.OV

(I) c3
(ZL) ¶(2)}

Lnm M

N i

reference concdor
z-O z az, z-A

big. 12. A single length multiconductor transmission

line with loads and lumped sources. I
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With the aid of (139), the total line currents and voltages on

the source-free section of the line can be expressed as

(Is) - (T,)e U (A,•) + (T.e)e (BU) (143)
(Y )z1--(YYn)

(Vn) " TT) e (Cn + (Tn ) T-e('Inn)(

By writing an equation in the form of (143) for each source-free

section of the multiconductor line, and then using the impedance and
source boundary conditions, as done in the case of the two-conductor
line, the following matrix equation can be developed for the currents

flowing at the matrix load impedances

L(In(L)) _L(o ((Onm)+(r 2 ))
nm (144)

(T)e 
(Tm)

U m) e ( I .aT- 2L U

where the terms (',)q, q-1,2 represent the source terms on the multi-

conductor line and are referred to as the combined current sources.

These terms are given by

-(Tr) \ ' (V (In))(n 2 nm IM C•) (n)- ((U

Notice that the matrix equation in (144) has matrices as its elements.

Thus it is referred to as a supermatrix equation.
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The terms (rl) and (Umn are the generalized voltage reflect;Lon• ':

coefficients defined as

(ri)' [(') (Z] [L' L Z) (146) MI

for the impedance load at z-O, and similarly for (r2nm) at z-Z with

(Z(2)) as the load impedance. In this equation, the term (Zn)Lnm
represents the characteristic impedance matrix of the multiconductor
line and is given by the relation

H -I
(Z) - (Y') (T-l (y)(T)_ 1  (147)

The treatment of distributed excitation, as opposed to the

discrete excitation described above, can be regarded as a simple

extension of the above formulae, by integrating over the (V'(S))

and (I'(S)) source distributions. For this case, the terms (Vn)n ni
and (09U)2 in (145) take the form

(On1" 1f (Tnm)e( n)(Tnm)-I ((Zc )-l(Vn(S)nm(0•)) +(In'(s)(W)dt

(148)
(T.) nn (T-.) ((. ('() (n s 0

n nm

which follows directly from superposition. Notice that now the

voltage and current sources are per-unit-length quantities, and hence

are denoted by a prime.

Once the transmission-line currents at the loads have been

determined from (144) the line voltages at the loads can be determined

as
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(Vn(O)) - - (Z 1 ))(In(O))

urn (149)

(VnUM)) (ý )(InOW)

Note that here. only the terminal responses of the multiconductor

line have been discussed. The general line response for a. multiconductor

line can be evaluated using the same technique as for the two-wire line,

but the results are generally not too useful for EM applications.

It should be noted in passing that it is possible to develop an

alternate formulation for the response of a multiconductor line,
involving voltage reflection coefficients, the voltage eigenmodes

Fiand propagation constants, and the combined voltage sources. There
is no reason for preferring one formulation to another, since each

requires an equal amount of work for computations.

1.3.2.3 Analysis of Transmission Line Networks

The previous sections have discussed the solution for voltage

and current of a single section of two-wire transmission line, and

on a general multiconductor transmission line. In actual situations

a single section of transmission line may not accurately model the

physical configuration of conductors. Many cascaded transmission-line

sections, branching transmission lines, or lines forming closed loops

may be required for an accurate model of an electrical system.
As will be shown in this section, a general interconnected

transmission-line network can be described by an equation similar to

that of (144). By using the electrical properties of the individual

transmission-line sections which comprise the transmission-line network

(here referred to as transmission tubes), as well as details of the

interconnection of the transmission lines at the junctions, it is

possible to solve for the various load currents or voltages in a

direct fashion, as discussed in [35- 37].

Consider a multiconductor transmission-line network, with four

interconnected uniform transmission lines and a common reference

119



Wr
conductor, as illustrated in Fig. 13a. It is 4esired to compute the
voltAge or current response at various junctions within the network.
To facilitate the analysis, it is convenient to represent the network

by a linear graph, consisting of junctions and tubes, as shown in
Fig. 13b. This network can be described mathema4tically by one or
more interconnection matrices [363 which indicate how the tubes and
junctions are connected. For example, there are tube-tube, junction-
junction, junction-tube and tube--junction matrices. Furthermore,

(a)
T +

T23

tube

Fig. 13. (a) A simple multiconductor tranamission-line network, and

(b) its associated graph.
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&Inc ew propagation analysis on the nIaticonductor tubes involves

forward and backward propagating waves, it is possibleý to define a

wave-wave interconnection matriz for which a typical element relate

a particular Incident wave at a juncti•p to all the scattered waves

at the sam Junction.

In Sec. 1.3.2.2.2 the propagation relations for voltage and

current waves on a wulticonductor line have been developed. A slightly

different (but equivalent) method for determining these propagation

relations has been developed in [36] and involves the concept of a

combined voltage quantity, (Vn)qt which is defined as

(VU) + q)(Z )(In) (150)

nq n Cam

The quantity q is +1 or -1, depending on whether the combined voltage

wave is forward or backward propagating, and (Vu) and (IU) are the

usual tube voltage and current vectors.

The combined voltage -differential equation describing the propa-

gation along the tube comes directly from the Telegrapher's equations

and has the form

-?q (V ) + q v ) (151)
at a q 4;)onTA (V)q n q

where (V )) is a combined voltage source term involving the actualU q
distributed voltage and current sources, (V'(s)) and (I(s)), and is

given by

(yt(s) (05)) + q(Z )(11(s)) (152)
n q U can U

Eg. (151) can be solved using the sam diagonalization procedure

used for (136) with the result that
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"-T T -(n -q v T

unq S . I
+0f,. ,To-q(ynn)• 4153) '

X. [(V + q3 (TZT~ m (153

Here the modal matrix (Tim) and the diagonal eigeuvalue matrix (yn)
are defined in (137) or (138).

Note that (153) relates the combined voltage at z to the sae
quantity at z -0 and to the distributed sources along the line. it
is, essentially, a relation for forward and backward propagating
voltage waves on the line. The total voltages on the line can thzA

be determined as

and the line current is

* ((I .(zA +- (- (155)

To apply (153) to the problem of analyzing a transmission-line
network, it in possible to obtain two independent relations for the
waves propagating away from the ends of the tubes in terms of the waves
incident on the tube ends. For a single tube of length Z, this takes

the form

L(vn(O))+ L(Onm) (Pom) L(V()o) _ (V 1I hi +1 (156)
L(Vn(.)) .J(P )() .i(V (0)) .(V (S~)-

where the matrix (PQ ) is given by

Una
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,F=)) (Tnm) ae(~(- (T M) ( 15 7)

and the source terms (V (U)) are obtajed from (153) with z -X as
n q

)+ (T. Teu (T ) T x [V () &0d+(Z

(158)

n - (Tm)e (Tn) (4.6)-(Z)I (=S)Jd&

Eq. (156), which is a matrix equation whose elements are themselves

matrices, is called a supermatrix equation and can be written in a more

compact form as

((%)v) = ((r)uv) : ((Vn)u) '+ ((Vn (8) )V) (159)

where the subscripts v- 1,2 and u- 1,2, and the propagation supermatrix

((PuM)u ) denotes the sparse supermatrix containing the P terms in (156).

4 For v- 1 the term (Vn) represents the n-vector combined voltage reflected

from the tube at z-0. Similarly, the v - 2 term represents combined

voltage reflected at z- •.

For a transmission-line network consisting of NT tubes, there will

be NT equations like (156) describing the line currents. These may

be expressed in supermatri* form as in (159) with u,v- 1,2, .. . 2N.V

In constructing this supermatrix equation, it should be noted that

the wave-wave interconnection matrix descrLbes the ordering of the

individual block matrices, (P UM), within the supermatrix.

In addition to (159), it is necessary to develop a relationship
between incident and reflected combined voltage waves at the netw•;rk
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junctions to be able to solve for the network response. For a junction

containing k tubes, the relationship betwpn the rilected and scattered

components can be expressed as

((V )v) - ((Snm)uv):((Vn)u) (160)

where the supervectors ((Vn)u) and ((Vn)v) consist of k vector components
and the supermatrix ((SM)u ) is a k xk block supermatrix. The elements

of ((Sm)uv) depend upon the details of the interconnection between

the various tubes at the junctions, the characteristic impedance of

the tubes, as well as any impedance discontinuities (or loading) which

may be present at the junction. This is discussed in more detail in [35].

The indices u and v here are not simply equal to .,2, ... k, but

depend on the values of u and v assigned to the k tubes connected to the

junction under consideration, as described by the junction-wave inter-

connection matrix. Eq.(160) is also valid for the entire network by

letting u and v run over all possible values found in the network, i.e.,

uv 1,2,... 2 NT.

After reordering the elements in the scattering equation (160), so as

to correspond to the wave-wave interconnection matrix, it is possible to

develop a single equation for all components of the combined incident

voltages at the junctions of the network by equating ((Vn)v) in (159) and

(160). We then obtain

((Vn)u) - [((S=)uv - ((Pn)U1( (161)

The total voltage at the ends of each tube in the network is then

expressed via (154) and (160) as

((V.~) I( u +L(V~) iu' Mu

[((i )uv ((n)uv)1]-I _ uv (S)]

((S 0 (v( (162)
/nmuv UMuv a
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where k-1,2,. 2N T and NT is the total number of tubes'wit'hn the

trausmission-line network.

The expression in (162) is one form of the BLT equation, which has |

been named after the authors of [36]. Other variations of this forada

maybe written for the total current. The above BLT equation describes

the voltage response at an arbitrary complex frequency a for the entire

network. Transient results for the network can be obtained using

Laplace or SEM methods.

1.3.2.4 Determination of Line Parameters

1.3.2.4.1 Line Capacitance, Conductance and Inductance

We have already seen that (C' ) can be determined by solving a

two-dimensional electrostatic problem. It can be shown that (L'u) and

(G0') are simply related to (C'). The field coupling coefficients (L•i
and (Cm ) can also be solved as electrostatic problems when the incident

m
field is essentially uniform throughout the line cross section.

It is worthwhile, therefore, to devote some brief consideration to

the solution of the two-dimensional electrostatic problem. For more

detail one may consult [31-34, 38- 48].

Three general methods of solution are available: mathematical,

experimental and numerical. Mathematical methods depend on solving (122),

or the inverse equation

N
v S -Q n-l,...N (163)

where the Su, called elastance coefficients, are defined by

n,k-1,... 1,N
uSk nu/QiSk�m-0 form k

In matrix notation,

. (Vn) - (Sý ) (164)

4 125r.

64,



i --- i-1- _ _III

whence -

(Q~)- (s) (M)
(165)

(c;M)(s;) -(SýM)(c;) -6m

.sowe results of analysis are given in Chap. 2.4.

Capacitance may be measured directly by standard methods, or, if

more convenient, a scaled model of the actual configuration may be used.

Analog measurements using an electrolytic tank or a cgndp tive s hAet

(Teledeltos paper) may be employed [43].

Numerical methods use high-speed digital computers to solve large
sets of aiiultaueous linear equations derived by writing the Laplace

differential equation as a finite difference equation, or to approximate

the integral of Poisson's equation

1 P- OdS'
V w 5 r

as a finite sum [43-48]. Space limitation precludes discussion of this
intereating subject in detail.

The conductance coefficients are readily determined from the

capacitance coefficients. The relation is

(' (C') (166)
rnm

In fact, (166) is the basis for determination of capacitance by the

electrolytic tank and conductive sheet methods [38,43].

The inductance matrix (Lx) may also be computed from the capaci-

tance natrix and the constitutive parameters. It may be shown that

the matrices (L' and (C' ) obey the relationship

To Ern(L, )(C') (C' )(L') - (6 (167)

for lines in homogeneous isotropic media.
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For media varying in the cross-sectional dimensions of the line

coefficients are frequently computed as though the system were electro-

static, while the inductance coefficients are determined as though

the medium permittivity were uniform.

1.3.2.4.2 Effects of Conductor Losses, Discontinuities and Inhomoseneties

In some cases, the conductors comprising the transmission line

cannot be considered to be perfectly conducting but are good conductors,

defined by the inequality

• •--c >> 1 (168)

A plane wave traveling over the surface of a semi-infinite plane

conductor induces surface current J (A/m) in the conductor. The loss

in a surface one meter wide and one meter long in the direction of
propagation is

W'z W 12R°0 watts/M 2 (169)•

where % is the effective resistance in ohms per square of a section

of the conductor one meter wide and one meter long. if 6 is the skin

depth, then

S-, 1/(a6) " v'if~ - (170)

I For conductors with curvilinear cross sections, but with radii of cur-( vature much greater than the skin depth, (170) is a good approximation

for the peripheral unit resistance, and is commonly used. Thus, the

resistance (2/m) of a solid round conductor of radius a isR

R' St . f_ T / m (171)
a 21ra 2a

If f is in M~z, a in mm, and a - 5.8 xlO u/m for copper conductors,
S~then

o.o415rf/a /M/ (172)Sa
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Sq. (171) assumes that current is distributed uniformly around the

conductor cross section. For a two-conductor line with conductor radii

equal to a, the line resistance, assuming uniform current distribution,

is 2R5, iLe.,

R' - 2R' r-plfa (173)

However, when the conductors are in close proximity, the current

distribution is disturbed. In that case, we can derive the conductor

resistance through the solution of an electrostatic problem. For instance,

for a round conductor of radius a and a circumferential linear current

density J, the conductor power loss per meter of-line is

J2d
W' aR j dO (174)

The conductor resistance R' is then given by

W' aR 2r2
R - a od (175)

2 Q2 fo
wherc, f

r2wr
Q aJ p df

and p is the conductor surface charge density along the circumference

of the wire, determined as the solution of an electrostatic problem. For

instance, the correct value for the two-conductor line resistance previously

given by (173) is

a' I [ ( (176) i
where D is the separation of the lines. :1

Thus, given a system of conductors with an assigned set of conductor

potentials, the various charge distributions 0 and therefore the effec-j 128
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tive resistances can be found. It must be emphasized that every different
set of potentials results in a (generally) different set of charge

distributions, therefore different values of line attenuation. The

only exception is the two-conductor (N- i) line.

KI Line discontinuities may occur for a variety of reasons: (a) line
terminatioas themselves constitute disconLinuities; (b) the line may

pass near one or more objects that constitute geometric disturbances I
in the uniformity of the line cross section; (c) cables may contain

occasional holes or slots that disturb cross-section uniformity. All
Isuch disturbances give rise to higher-order modes of propagation which,

because of the line's small electrical cross section, attenuate rapidlyr in the vicinity of the discontinuity. Their effect can be accounted
for by a simple lumped-constant network at the point of discontinuity.

A number of examples of such equivalent circuits is given in [49,50].!I
When a multiconductor line is embedded in an inhomogeneous

dielectric, as occurs frequently, for instance, in a multiwire cable,

propagation is no longer in a pure TEM or single mode. Strictly

speaking, the use of static values of capacitance, inductance and

conductance is erroneous; however, when the line cross section is

small compared to a wavelength, the errors are not expected to be

serious. evaliation of such errors is generally very complicated.
Some elemL,- ,ry cases have been analyzed to obtain information regarding

the error order of magnitude to be expected [38].

1.3.2.4.3 Experimental Determination of Line Parameters

In many practical situations, it may be difficult to compute

the transmission-line parameters from a knowledge of the geometrical

properties of the line. An alternate approach is to measure voltages
and/or currents on the line with various load configurations, and then to

evaluate the line parameters. A description of various techniques for

single and multiwire transmission lines is given in [51].

one approach to the problem of determining the p'arameters of a

two-wire line, assumed to be lossless, is to perform transient measure-

Sments at one end of the transmission line wit., a time-domain reflectometer
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(TDR). The TDR launches a very sharp voltage step into the line and

then measures the total (reflected plus incident) voltage at the line's

input as a function of time. The TDR records the instantaneous voltage

reflection coefficient r given byv

z -z
rv z + z (177)

where Z is the characteristic line impedance seen by the TDR and Zc c
is the internal impedance of the TDR. With a measurement of r from
the TDR the impedance of the two-wire line being measured is given by

Z W (l+ (178)

gc lZ-irv/

For most TDR's the generator impedance Z is 50 Q.

In addition to measuring the impedance level on the transmission

line, the TDR can be used to determine the imaginary part of the

propagation constant y on the line. This is done by noting the time

interval At between reflections at the near and far ends of the cable.

For a line of length k, this time is given by

At - -2 (179)
v

where v is the speed of propagation on the line. The imaginary part

of the propagaLion constant can then be expressed as

SAt

a Im(y) = A (180)

where w is the angular frequency.

The imaginary part of the series impedance per unit length of

the line is
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At
m(z' (s)) - I(y)zc - At (181)

which, together with (178), gives a series inductance per unit length

as

L' T-zg rg/ (182)

Sand a shunt capacitance per unit length

S, At 1 1 v
C" -v (183)

ror multiconductor lines, the TDR measurements are somewhat more

complicated due to the fact that multiple propagation constants can

exist on the line. In this case an alternate set of measurements in

the frequency domain can be used to determine the parameters of a loss-

less multiconductor line [51]. This approach involves measuring the
se

input impedance matrix (Zn) of the line at one end with the other endnoc

shorted and the dual quantity, the input admittance matrix (Yoc), with

the other end in an open circuit configuration. If the line is assumed

lossless and the transmission line is electrically short, i.e., W/2c << 1,

these open and short circuit measurements lead directly to the per-unit-

length line parameters as

(L') - aczs
Um in /

- ,(184)
(c') - (oc )/k

where Z is the line length and the general complex frequency s has been

replaced by jw.

1.3.2.5 External Coupling Parameters

Transmission lines and cables are excited by external fields in a

* variety of ways. Perhaps, the prototypical example is that of an isolated
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two-conductor line subject to a plane wai, at arbitrary incidence. Other
situations include (a) distributed excitation of systems of one or more

wires close to a metal surface or to conducting earth; (b) distributed

j excitation of the interiors of cables through penetration of solid or

braided shields; (c) localized excitation of the interiors of cables

through leaks at connectors; (d) "point" excitation of conduit interiors

through leaks at conduit joints.

It is convenient to separate the incident electric and magnetic

field into components parallel to the line axis and those transverse

to the axis. Components transverse to the axis appear ordinarily to

be most important in exciting the line, and will first be discussed
below. By Faraday's induction law. variation in the axial componentI
of electric intensity across the line is equivalent to the transverse

magnetic field linking it.

1.3.2.5.1 Incident Field Components Transverse to a Two-Conductor Line

Because of the small transverse dimensions of the line it is

possible to solve for the transverse coupling parameters, or to measure

K them experimentally, by treating them as electrostatic quantities,

i.e., capacitances or combinations of capacitances. This situation

can be appreciated intuitively by imagining the excitation fields toI
be the result of a wave on a parallel-plate transmission line enclosing

the given 'Line (Fig. 14). The parallel plates are sufficiently sepa-

H- lines
E- lines-

-=_ __D

Fig. 14. Parallel-plate line enclosing two-wire line. >
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rated from the line, so that the reaction of currents and charges on

the line does not affect the values of current and charge on the

plates. Thus, the E-field coupling problem is reduced essentially

to that of capacitance coupling between the two-conductor line and

the plate line. The H-field coupling is one of inductive coupling,

which is directly related to an electrostatic problem. Some problems
using this concept are solved in [38].

An-elegant theoretical approach starting with fundamental concepts

is used in [31]. For a line of two conductors with arbitrary cross

$ sections in a uniform field, the incident-field forcing functions of

(117) are given by the first terms on the right side of (119). For a plane

wave incident on an isolated two-conductor line, a simple relation

4 exists between V and I'(s) of (117) if the Poynting vector of the

incident wave makes an angle 0 with the line axis, and the E-vector

is parallel to the plane containing the conductors' axes. Then

'(s) y Z H h e-YZ cos0

V0

'i c

where IIo, £ are the magnetic and electric field incident on the line
,0 0

S~at z -O, Z is the free-space impedance, and Z is the line characteristicSo c

impedance.

For a single conductor over a lossless ground plane, the above

equations can also be used for determining the line excitation. Because

of reflection from the ground, the effective values of H and E0 cos

are doubled in (185), while

h- 1g~ - (a/Dg)2] (186) *
where a is the conductor radius and Dg is the height of the conductor

center above the ground plane. The value of Z also changes accordingly.
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1.3.2.5.2 Transverse Field Coupling to a Coaxial Cable Near a Periectly
Conducting Ground

One important transmission-line configuration often used for EMP

analysis is a coaxial cable whose inner conductor is excited by an

incident EMP. The EMP field is incident on the cable exterior, with

¶ coupling parameters computed as though it were a solid conductor. The I
Induced current on the cable exterior gives rise to a series distributed

voltage in the interior of the cable given by [52,53]

v' (S) .,; (187)
- ZTIt

where It is the total current flowing on the cable, and Z; is the transfer

impedance which will be discussed in Chap. 2.4.

The geometry of a braided shield, however, is such as to preclude

any possibility of a tractable mathematical model that resembles closely

an actual shield. A number of ingenious approximate models have been

suggested and analyzed [54- 60] and, in at least one case, compared with

measured data [54]. In spite of the fact that some of the experimental

data had been based on partly erroneous concepts concerning the coupling

mechanism [61] the calculated and measured values agreed within a factor

of about 3 to 1. A developed section of a braided shield is shown in

Fig. 15. As a result of the incomplete coverage of the criss-crossed

wire braids, small diamond-shaped apertures occur through which both

electric and magnetic fields can penetrate, the penetrability increasing

with frequency. In addition, magnetic field diffuses through the solid

portion of the shield, diminishing with increasing frequency. The deter-

mination of the distributed sources (V.(s)) and (an(be)"ound ien n canbfound in
Chap. 2.4.

1.3.2.5.3 Axial Field Coupling to Transmission Lines

For conductors with electrically small cross sections, an incident

axial magnetic field component is of no practical importance. An axial
electric field component, on the other hand, affects TEM transmission in
two ways. First,the variation of this field component across the line
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Sdue primarily to space phase shift can be accounted for by the transverse

magnetic field component, which has already been considered. Second, the

average value of the axial electric intensity induces antenna-mode currents

I and charges Q' on the conductors, as defined in (118). For more 4etails
c cthe reader is referred to [31].

1.3.2.5.4 Field Coupling to a Multiconductor Line

The determination of the field excited sources (d)) and (I ))
n n

has been discussed recently in [62]. For a general coaxial multicoaductor.

line these sources take the form

• 2

2 i) I
N W) (ZTý(z))Qtz) + I (ZT (z))((HM))mW]. n

In this relation Itand Qt represent the total current and charge per
unit length on the outer sheath of a coaxial multiconductor line. The
other terms, which are sunimed over m (the three orthogonal vector

I Fig. 15. Braid pattern developed on a plane.
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directions, with a- 3 corresponding to the direction of propagation on

the line), relate the sources to the appropriate components of the inci-

deat 9,and filds through the transfer impedance vectors (Z.' (s))
and the chairge transfer functions (Q,,(z)),.

The determination of the source terms for an open multiconductor

transmission line has also been discussed in [38,63] for the special

case of round 'cOnductors with radii small compared to their separation.

Under this assumption of no interactions aaong the. -a, cmionductors these

source terms take the form

s•° W) (9,zd

,0 d (189)

(d E

I ) (C,) E (COdC)
:lf

where dn represents the distance from the reference conductor to the nth

conductor, H. is the perpendicular component of the incident magnetic

field passing through the area between the reference and the nth conduc-

tor, and 4• is the transverse component of the incident electric field

between the conductors. For lines vwth cross sections small compared

with a wavelength, such that 9 and do not vary appreciably over

the cross section, these terms can be approximated as

UV () (opn HA~
(190)

-) a(C;,)(d.L (W))
L

For a more general multiconductor cable whose wire radii may be

comparable to the wire separation, (190) is not valid due to the non-

uniform distribution .of charges and currants around ths wires. Te

above source terms for thick wire conductors as well as the antenna-mode
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excitation for a multiconductor transmission line have not bemn investi-

gated in detail, and remain an area open for future research.

An alternate approach to determining the external coupling vectors

for a multiconductor cable is to measure them experimentally. This'

approach will require a generalization of the accepted technique of

exciting the cable through an auxiliary coaxial cylinder surrounding

it (64- 661. However, care must be takn that the results are inter-

preted properly [61].

1.3.3 CIRCUIT APPROACH

for The circuit approach is essentially a low-frequency method useful

for wavelengths much greater than the overall dimensions of the system

under consideration. When this assumption holds, the electrical response

of the system can be described by the conventional circuit theory. This

theory is expressed in two laws, the Kirchhoff current and voltage laws.

These two laws take extremely simple mathematical form, namely, the form

of algebraic and ordinary differential equations. For this reason the

circuit approach quickly leads to simple and physically interpretable

results. Besides the analytical ease of this approach, the circuit

concept is a powerful tool for qualitative thinking, often shedding

valuable light on the many electromagnetic interactions taking place

within a complex system. But two important points must be borne in

mind in applying the circuit concept to EMU interaction problems. The

circuit approach is an approximation to the transmission-line approach

(Sec. 1.3.2) which, in turn, is an approximation to the integral-equation

approach (Sec. 1.3.1). Another point is that the circuit approach is

incomplete in the sense that it gives no information on the value of

the lumped circuit elements (the resistance, inductance, and capacitance)

of the object under consideration. These elements must be deduced from

either field theory or experi*ie~ measurements.

In this section we will first discuss the relationship of Kirchhoff's

4• circuit theory to Maxwell's field theory starting from Maxwell's equations

in integral form. This relationship is then re-examinad from the customary j
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viewpoint of the electrical engineer thxough the uae of vector and

scalar potentials. We then proceed to derive the circuit properties

of an object in infinite space with the aid of the complex Poynting

"theorem expressed in terms of current and charge densities on the

external surface of the object. With this theorem the positive real

(p.r.) characteristics of the driving-point impedance or admittance

can be proved, the resonance condition can be established, and the

damping of each resonant (natural) mode by radiation can be calculated.

This theorem also leads, at the low-frequency limit, to the concept of

energy functions in terms of which the Kirchhoff voltage law can be

re-derived by the Lagrangian method. To end this section we will

briefly discuss the equivalent circuit representations of discontinuities

in an otherwise uniform transmission line or waveguide, and the circuit

descriptions of the dynamic behaviors of several different kinds of
modes, such as the waveguide modes, the cavity modes, the leaky modes,

and X# natural modes.

1.3.3.1 Circuit Theory via Maxwell's Equations in Integral Form

A close relationship between circuit theory and fleld theory can

be found in Maxw#ll's equations written in integral form [67- 69]

S~ fj1 (191)

f dt ju + 1 (192)
C S

where the surface S spans the contour C (Fig. 16), 1 is the total

conduction current crossing the surface S, and the circle through the

integral sign is used to denote that the contour is a closed curve.

Note that in (191) and (192) all spatial coordinates are integrated

out, as is the case with Kirchhoff's laws in circuit theory.

To illustrate how (191) can be applied to EHP interaction problems
we consider a conducting loop immersed in a slowly time-varying magnetic
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*field P~)and calculate the induced current I In ýhe loop (Fig.. l7a).

Let us take the contour C anywhere inside the loop. Then, using Ohm's

low at. one gets from th le e d (191)

where R is the loop's resistance and is given by

R f di (194)

if I is uniformly distributed over the cross-section A of the wire. The

direction of the induced current I is dictated by Leaz's rule, which

states that the direction of the induced current in the loop is such

that it tends to oppose the change of flux linking the loop [67,701.

To evaluate the right-hand side of (191) we write as the sum of

the incident and scattered magnetic fields, and obtain

d f ~j d' d 15
dtdt dt(15

) dS

Fig. 16. A surface S spanning the closed curve C.
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where 0 and *s are, respectively, the total flux of the incident and

scattered field P and P linking the loop, and 0 is equal to times

the affective area Aef of the loop, namely [71] "

*i= f (196)

Since to is proportional to the induced current I we write iV\

- LI(t) (197)

where the proportionality constant L is the so-called self-inductance of
the loop. Substitution of (193), (195) and (197) in (191) gives

L di' + RI VAt R- oc
(198)

d d OVJoc - dt

) !(b).. CL R

(€ondtivity)•

Fig. 17. (a) A conducting loop in a time-varying magnetic field,

(b) Equivalent circuit of (a),
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which expresses the Kirchhoff voltage law for a EL network that the

total voltage drop around a closed loop is zero. The circuit represen-

tation of (198) is shown in Fig. 17b.

We now turn to (192) and see how it can be applied to calculate the

induced voltage on a hatch in a large ground plane exposed to a slowly

tim-varying electric field (see Fig. 18a). We first split the contour

C into C++ C and the surface S into S+++S_, where the subscripts - refer
to the upper and lower surfaces of the geometry of the problem, as shown

in Fis, 18ab. With the direction of the conduction current I in the

caukst as defined in the figures, the left-hand side of (192) gives

rsr (t)
(o) (c)6 V

ii +

++ +• +* + metal

j + cM cond•ting gasket

Fig. 18. (a) A hatch aperture with a conducting gasket in a time-varying

electric field, (b) cross-sectional view of (a), in which

CO() points out(into)the pages, and (c) equivalent circuit

of (a).

t
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f-d I -- GV (199)

where V is the induced voltage on the hatch with respect to the ground

plane and G is the conductance of the hatch given approximately by

Go di (200)

C

where w and A are the average width and thickness of the gasket and a is

the gasket's conductivity.

The right-hand side of (192) can be evaluated in the same manner
as (195). Thus,

dtS dt ( sc
+S_

=Is + _ (201)
dt d,

where Q is the total charge on the hatch due to the scattered field

alone and I is equal to the equivalent area A of the hatch multipliedsc 4. eq
by the short-circuit displacement current Dsc, namely [71]

d (202)IS Ae Tt Dsc(2)
sc eqdts

The charge Q is of course related to the induced voltage V through

Q(t) - C V(t) (203)

and the constant C is just the capacitance of the hatch with respect to the

ground plane. After substituting (199), (201) and (203) into (192) we obtain
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I
c dV + GV - - Is
C dt + V Ise (204)

which is the Kirchhoff current law stating that the total current flowing

int, )r leaving a node is zero. The circuit representation of (204) is I
shown in Fig. 18c.

In circuit theory Fig. 18c is said to be the dual of Fig. l7b, and

vice versa [72]. In field theory the duality is a direct consequence

of certain symmetries in Maxwell's equations [73], aranifesting itself

in the principle of Babinet for a plane screen [74]. If the resistive

loop of Fig. 17a is the exact complement of the impedance-loaded slot
of Fig. lSa, the Babinet principle says that there exist definite

relations betT-.en the quantities L, R, I, Voc, Aef of Fig. 17b and

the quantities C, G, V, I , A of Fig. 18c. Thr relations are

summarized in table 1 [75].

TABLE 1. RELATIONSHIP BETWEEN DUAL QUANTITIES

Quantities Quantities

in Fig. 17b in Fig. 18c

L - (Z /4)C
0

R - (Z2/4)G
0

I = (2/Z0)V

Voc -- (Z0/2)Isc

Aef A--Aeq

1.3.3.2 Circuit Theory via Scalar and Vector Potentials

In the preceding section we Eaw how an equivalent circuit can be

constructed by integrating out all the spacial variables of Maywell's

equations. There is another method which leads to the Kirchhoff circuit
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theory from the Maxwell field theory. This method, perhaps more

appealing to the electrical engineer, is to make use of the electric

scalar pottential * and the magnetic vector potential A [76,77). Consider,
for example, a conducting loop immersed in an iacident field E, as

shown in 43. 19a. Within the conductor we have

Vx - (, + jW)e (205)

.. ,which gives, upon integration over the cross-section S of the conductor,

T(V) - f (a+Jwe)EcdS (206)
S

where I is the total current crossing S. Next, we split the total field
i dE into the incident and scattered field Eand EC, and write

i+ s
*1 E -E

-E - JwA8 
- (207)

"I~o

E . contourL

10,genueitr + -

Fig. 19. (a) A onducting loop with capacitor and generator in an

incident field, (b) equivalent circuit of (a).
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If one makes the assumption that the 4-dependence of a function can be
separated out from its dependence on the transverse coordinates (n,O),

i.e., if one writes

H (208)
f (Th), ~

then one gets, by substituting (207) and (208) into (206),

JWA + + Z1I -i (209)

with the internal impedance Zi per unit length and the weighted incident

field E given by !
- (- +jwo)f()i,ý)dn d4

-i J(a+Jwe)Eidr dc 20

When the cross-sectional dimensions of the conductor are electrically

small, (210) can be replaced by

Zi. (211)

where S is the cross-sectional area of the conductor.

To obtain the ULrchhoff voltage law we integrate (209) around the

loop (Fig. 19), and get

iW d C + 2r- d& + Z I f i dg (212)
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where I is assumed to have no variation along the 1,-op, and Z is the

total internal impedance of the loop and, fcr all : ctical applications,
is equal to R given by (194). The first term on the ieft-hand side of
(212) can be identified with the voltage drop across an inductor and the

second term represents the voltage drop across a capacitor or the voltage

jump acrozs a voltage generator. Any voltage generator can be combined

with the right-hand side of (212) to form the total electromotive force

&. Thus, (212) is in fact the Kirchhoff voltage law

(WL + +--I ) + Z (213) 1
The circuit appropriate to (213) is shown in Fig. 19b.

One may also apply the above procedure to obtain an equivalent

circuit for the complementary geometry of Fig. 18a, but the details

are omitted here.

1.3.3.3 Circuit Properties of an Object in Free Space

The lumped circuit elements L and C are intimately associated with

the total stored magnetic and electric energies, while the other lumped

element R is a measure of the heat dissipated either through ohmic lossesI

or by way of radiation. This interpretation of the lumped elements works

well for a finite region of space such as the space confined by a cavity,1

but it meets with serious difficulty for an unbounded region, as in the
case of an antenna radiating into an infinite space. The difficulty lies
in the fact that the total electric and magnetic energies of a radiated

field are infinite in an unbounded region because the field decays only

as the inverse distance at infinity from the antenna or scatterer. One

way out of this difficulty is to define the magnetic energy as arising

from the interactions among the surface currents and the electric energy

from the interactions among the surface charges. This definition avoids

the consideration of field energy density distributed throughout the

infinite space, and leads to the usual definition of magnetostatic and
electrostatic energies. In the following we will first discuss this

point with the aid of the complex Poynting theorem. With this theorem
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we will establish that the total interaction energy is a positive-real

t function of which the driving-point impedance or admittance of an antenna
1 -••is a special case.

t1.3.3.3.1 Complex Ponting's Theorem

f The complex Poynting theorem provides an essaentLal link between

the field theory and circuit theory. It has been often used by the

field theorist to derive equivalent circuits for reaonators, waveguides,

and other microwave devices [78,79].

Let us start with the E-field equation for a perfect conductor in( an incident field i, viz.,*

tx~i j WJl.n× 3 GdS' +-lxVj p GdS' (214)
U f e n

S S

where J and p are the surface current and charge densities, G is the

free-space Green's function, andl is the outward unit vector normal to;and

the surface S of the conductor. Scalarly multiplying (214) by H ,

the complex conjugate of the magnetic intensity H and integrating over
i ~S, we obtain

I I I
f -d -9 r f - * ( (+)G(+r,r))d'

S S
2 2

(215)

- p ('r)p (r')G(+r,rl)dS'dS
2e

where the factor 1/2 h. 3 been inserted, so that the left-hand side of

(215) tan be interpreted as a time-average quantity. Separating out

the real and imaginary parts of the right-hand side of (215) we get

We leave it to the interested reader to generalize expressions (214)
S~through (223) to the complex s-plan,.
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PJ I~tdS j 2W(W~-W, ) + (216)
S

with the total time-average energies, Wj and Wp, and the total time-average

radiated or scattered power P given by

4 ( ( dS'dS (217)

W (.O).(,) cos kR dS'dS (218)p 4z 4irR

ff Y2-,*(r)p(rl)] dS'dS (29
2c41rR(29

where R -r r'j. Eq.(216) has the following physical meaning: the

time-average power that the incident field P spends in creating I and

p on the surface of a perfect conductor is equal to j2w times the

difference of the time-average energy associated with the surface

current I and the time-average energy associated with the surface

charge p plus the total time-average power scattered by the conductor.

aNote that W and P are all well-defined quantities and that for

low frequencies 2Wj and 2W, reduce respectively to the magnetostatic
and electrostatic energies; that is, for w ÷1 0 + "

27w. f~- f r r S (220)8i a J + 4- 1 Sd

1 r r

27w 1 D , dSt dS (221)

Before proceeding to the applications of (216) it should be

mentioned that (216) is equivalent to the complex Poyatiug theorem

expressed in the familiar form .
Nd
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I

where the superscript s is used to denote scattered field, and V is the
volume bounded by the surface S of the conductor and the surface S at
infinity. It is important to note that unlike Wj and W the total time
average magnetic and electric energies of the scattered field, W and

- (223)

are infinite as V.. becomes infinite. At the static limit, however,

and respectively tend to Wi and Wgiven by (220) and (221)e ~J

1.3.3.3.2 Natural Frequencies

As a first application of (215) we will show how it directly leads to

a stationary expression for calculating the natural frequencies of a
finite-sized object in free space. Corresponding to each natural

frequency there is a RLC network, and hence the circuit properties of
aa object are characterized by its natural frequencies [80].

The condition for natural resonance or free oscillation of a body

is given by (215) in the absence of the incident field •. Thus,

-+ + q(1 r*().I(+r')G('r,'r')dS'dS - -- P(r)p(r')G(rr:)dS'dS (224)

Making use of the continuity equation

Vi -1 jWP (225)

one obtains from (224)
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F--- r- -'J' -d.d
,+ , + •(226)

UCS. 1(r) [v'G ) 4(+rr';k)dS'ds

j The following points should be noted about (226) (see, for exa-+le, '01)

.or prodfs):

(4a) Let 3 [JJr] be the functional denoting the right-hand side of
(226). One can show by the calculus of variations that the

problem of maximizing or minimizing 3 is equivalent to solving,

the E-field equation (214) with • O= 0.

2Wb Eq. (226) is a stationary representation for w in the sense

that a trial functSion I or :r, which is good to first order,

will yield an approximate w which is good to second order.

(c) The functional 3 depends on the parameter k through the Green's
function G. This parameter should be determined by the process

of maximizing or minimizing 3 after evaluation of integrals for

a chosen tr aW function.

For slender structures such as a thin rod or a stick-model aircraft
the damping due to radiation can be treated as a perturbation. In this

case (226) can 1e simplified considerably. Let s. and be the natural

frequency and natural current mode of the nth mode, and let+ii
S + •n jn

(227)

n a

Then, a simple manipulation of (226) gives

+*2sink ./td

n J(+r) Jn(r' 4wR)~ncos k . (228)

SS J Jnnr') 41R dS'dS

where I is the unit dyad, and the resonance angular frequency n is

calculated approximately from the simple transmission-line theory.
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The approximate expression (228) for a can also be derived from

the concept of Q, the so-called quality factor. Since the bandwidth

of the nth mode is given by 2an and [72]

2 2W n W~ (229)

one has

"n "~ 4(230)

where WJ and P are given by (217) and (219) for k-t .n' and'

S'p.- .Substituting the values of PU and W., in (230) one obtains (228).

For a thin rod expression (228) gives an a value identical to that

obtained by the Halldn asymptotic antenna theory [82]. This expression

has been used to calculate the damping constants of the natural modes of

a stick-model aircraft [83].

1.3.3.3.3 Positive Real Functions

As a second application of (215) we will demonstrate that the

driving-point impedance or admittance of an antenna is a positive real

(p.r.) function. As is well known in circuit synthesis, the p.r. property
S~of a function is a necessary and sufficient condition to ensure its

physical realizability, by which it is meant that a p.r. function can

be synthesized with passiva lumped circuit elements [84]. A function

is said to be p.r. if in the complex frequency s-plane

(a) it is real for real values of s, and

(b) it has a positive real part in the right half s-plane.

The requirement (b) can be replaced by the requirement that it be analytic
+ in the right half s-plane and have a nounegative real part on the jw-axis.

Let Z1,12 denote the left-hand side of (215) with the proportiv..ality

2"factor jij i.e.,

p



7hen, with a repUlai jo and 1-5), pC-a) replacing .OW), P*(Jaw)
re(e)tively in (215) we have

Z(s) y [ j (t,-S).1(,'os)G(r,r',s)dS'dS

, -, , s(232)

It Is easy to see that Z is rea w•en a is real, thaWk to the symmtry

of G in aud l'. On the jw-axis the real part of Z is givenby

Re Z{iw) " --- ' - (233)
i! (1/2) I1(jw) 12 ,

vhere g is the total average scattered or radiAted powir given by (219)

Wd is certainly nonnegative. urthermore, Z is analytic in the right

bulf s-plano because I and p atisi£y the causality condition. Thus, Z

is a p.r. function and is physically realisable with passive luýuped

e or a transmitting ante=n anargised by a sliced voltage generator,

the incident fi•el in (231) takes the forst
14- + +

11(0,+) VWS) (r- r0 ) (234)

In this case the expression (232) for Z is the driving-point impedance.

This expression has bean used by sonm investigators as the starting I
point for a variational calculation of the driving-point impedance of

a cyindrcalantenna (85,86).
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1.3.3.3.4 Enry Functions . •

W e the scatterer in electrically small, i.e., whe kR << 1, one

may Wand coo t and sin r.z:In powers of k*. one then obtain*s fom

(217), (218) and (219)

- * + ' 2 rr •(;>is• a6

I 'A
•j ds÷s+ .÷ .125

""p ,()dSo•S dS a "p Jý US )Jdr'd+ . (236)

V rSu(•t.Vu')ds'dt + (- f0) p*(n)P(')R.2 dS'4S + .v(237)m8, J 48we J
where

P('p()dS 0 (238)

J '1

I b~a be s d o a satrer with no net charge. By using the continuity
quation (225) c dna can show that with o h denotlng the unit vector of

one obtains

fi *-,+r)p('r')R dS'dS - - -Lff (l)-t -ýtA]-')WdS'd (239)

fre 2, 2R *+

JI~p(',R2dS'dS - - Lf J (r) J(r')(240)
W 2J

Substitution of (240) into (237) gives

o kli if ~ &'d'S(241)112
If one recalls the definition of the dipole m~oment p [731

f dS -j4 +p
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thii the expression (241) can be written

P M l I2v P

which is the total time-average power radiated by a dipole L871.

Substituting (235), (236), (239) and (241) into (216) we

1 .J 2 - T-V) + 2Y (243)

where T, V and T are the so-called time-average energy functionas LU

circuit theory [72] and are given by

[+f qIJ(4 ))P_()41 4  )dd I dd (244)

*+ +

p - r\-(- r d').Jr)dS (245)

i(L±o)fJ J+-* (+) +J(+) dS dS (246)

where Z is the free-space impedance. Note that T consists of two

parts: the part associated withT can be identified as one-half the

uoual Neumann formula for magnetic energy, while the other part is

one-half the Weber formula for magnetic energy, which is little known

nowadays but was a subject of considerable controversy in the middle

of last century until Helmholtz showed that the two formulas give the

same result for closed circuits [88]. The total magnetic energy

given in (244) is similar to the one derived by Lamb [89].

To find the counterpart of (243) in the time domain, one starts

with the time domain E-field equation, scalarly multiplies with the

total ý, integrates the resulting equation over the entire surface of I
the scattarer, and obtains 4
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It-'r. t) - - - R/c r-ý-)

I Ii
(247)

':• :" +• R ct- .r' p(ý, t)Wds'

For tims larger than the transit time R/c across the scatrex one
may eipand p(t- R/c) an4 I(t- R/c) in Taylor's series about t. Howse,

one obtains from (247)

f (r*.t).(UrtQdS - (T+V) +F (248)

with the instantaneous magnetic energy T, electric energy V, and

T -pVr, t) +t't)tdSddS (249)161 if RR

V .- L Ip+tp(rtdSS (250)

J;rJJL 2 _ t) +i(T,,t). (5
R r F- f --f, ) W AS' , (251)
12•r at2 •t2 a2

Note that the integrands in (249) - (251) are symmetric in - and r
Now, if one approximate the integrals of (249)- (251) by some quadra-

ture formulas, one may write these equations in a discrete form

T ii (252)
j:,k

V Sjk qk (253) Lj
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1 2•+ (254)F "• Z~kRjk (ij --2 d2/

where Li and Si are the elements of the inductance and elastanm

ma s R has the dimens ion of ohm- (second) and is proportional to

the cosine of the angle between 1(r ) and 1 ), and q in the charge

on the jth subarea of the scatterer.

We are now in a position to go directly to the Lagrangian dftscrip-
tion of the Kirchhoff voltage law. Let qj be the generalized coordinate,

Z be the Lagrangian defined by

Z" T - V (255)

and F be the Rayleigh dissipation function. Thea, the Euler-Lagrange I
equation is [90]

d _ K_+ - (256)
vdt 

/~ Dqj 84j

where 4 *i i and e denotes all electromotive forces such as the .

incident electric field E or the field due to a voltage generator

on the surface of the scatterer. Use of (252)- (254) in (256) gives

the Kirchhoff voltage law

n+ d k d 2,k) j' -l,2,...,n (257)

jk1 dt k ;kt-2

It should be noted that the disiipation term is Proportional to the

second time derivative of the ddrrent rather thaad the current itself

as in the case of ohmic loss. the dissipation term in (257) is due to

the radiation loss and is identical to the radiation reaction in the

non-relativistic equation of motion of a charged particle [77].

156 2

• -• + + , , . . . + , + .. .. . , .. . ,, .,, .. .+ ++ ,,•+• • + + +- +*



1.3.3.4 Circuit Description of Modes and Discontinuities

In the preceding sections we saw the intimate connection between

Maxwell's field theory and Kirchhoff's circuit theory, first in the

integral form of Maxwell's equations, then through the scalar and

vector potentials, and finally in the Lagrangian formulation. The

common assumption we employed is that the wavelengths in the surrounding

medium are much greater than the dimensions of the object under consider- I*
ation. This, however, does not mean that the circuit approach is

useful only for electrically small objects. In many instances, the

electromagnetic behavicr of an object, regardless of its electrical

n

Wpi,s) a (s)4, (r) (258)
n

in which the modal amplitudes an(s) may be represented by equivalent

circuits. We will discuss the types of modes often found in EMfl

interaction problems.

Another area where the equivalent-circuit approach has invariably '
bean used is the problem of describing the effect of a discontinuity

in a uniform wave-guiding structure on the dominant mode. The justi-

fication for such a description is that the energies of the higher-

order modes created by the discontinuity are confine~d to the neighborhood

of the discontinuity. In the following, several types of discontinuities

commonly encountered in EM? Interaction problems will be described.

1.3.3.4.1 Modes

2 typeFig. 20 shows some typical structures on which the most common

type ofmodes exist. They are the natural modes of a body in free2 space (Fig. 20a), the normal modes inside a cavity (Fig. 20b), the

leaky modes on two parallel plates of finite width (Fig. 20c), and

the waveguide modes within a coaxial cable (Fig. 20d).
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Natural modes: They are the solutions of source-free Maxwell's

equations &ubject to some prescribed boundary conditions on the surface

of a body and the outgoing wave condition at infinity. The modal

functions t (r) increase exponentially at infinity. The modal ampli-

tudes an(S) are meromorphic and holomorphic respectively in the left

half and right half s-plane [91], which is to say, the only singularities

of an(s) are poles in the left half s-plane (Fig. 21). Corresponding

to each pole there is an equivalent RLC circuit [80]. It should be

remarked that the above consideration excludes the singularities of

the excitation, if any, which may be contained in an(s).

Cavity normal modes: These modes form a complete orthogonal set

and are regular everywhere within the cavity. They are a special case

of the natural mode. For a lossless cavity the modal amplitudes an (s)

have simple poles on the jw-axis, each of which corresponds to an

equivalent LC circuit (Fig. 21a).

(a) object in free space (b) cavity
zz

(c) t pral (d) coaxial waveguide
) two parallel plates

Fig. 20. Structures for: (a) natural modes, (b) normal modes,

(c) leaky modes and, (d) waveguide modes.
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Leaky modes: These modes aie in many ways similar to the natural

modes except that a leaky-mode structure is two-dimensional, while a

natural-mode structure is three-dimensional. The modal functions %('),

except for the TEM mode, increase exponentially along a direction

transverse to the- axis of the structure and decrease exponentially

along the axial direction of the structure. Let z be the axial

direction and xy be the transverse directions. Then one may write

Sn W n (x,y)e (259)

Tne singularities C are shown in Fig. 21b in the so-called improper

(bottom) sheet of the double Riemann surface [92,93]. The other sheet

mI(s) Im i

+ + s-plane + jpIaC

+ + C + C-pan.

-- Re(s) cut +

+ + x normal, cut + -Cn
waveguide modes+. +

+ + natural, rIJ j/C
(O) leoky ýn.-ode, Wb

Fig. 21. (a) Natural and resonance frequencies of the natural and

normal modes in the s-plane, (b) complex propagation

constants ýn of leaky modes in the improper (bottom)

sheet where the second and fourth quadrant are referred

respectively to +z and -z.
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(the top sheet of Fig. 21b) is called the proper sheet in which the

leaky modes are absent. For each mode it should be possible to

construct a transmission-line analogue with the help of the complex

Poynting vector theorem, in much the same way as in the case of a
waveguide mode [79].

Waveguide modes: These modes form a complete orthogonal set and

are regular everywhere within any cross section of a waveguide. They

are a special case of the leaky modes. In the complex C-plane the only

singularities are poles which are located either on the jw-axis or the

real axis. The jco-axis poles correspond to propagating modes, whereas

the real-axis poles are associated with evanescent modes along the

z-axis (Fig. 20d) of the guide. For each mode there is a transmission-

line analogue [79]. I
In addition to the four different types of modes discussed above

there are other kinds of modes, such as the eigenmodes [94] and the

characteristic modes [95]. Circuit synthesis of these modes has not

yet been attempted.

1.3.3.4.2 Discontin; ities

In Fig. 22 we show some typLcal discontinuities often encountered

in WHP interaction problems. A discontinuity in a uniform wave-guiding

structure may take the form of aac obstacle (Fig. 22a), or simply a

termination (Fig. 22d). The question usually asked is, what effect

does a given discontinuity have on the dominant mode of a given guiding
structure? The most popular (and rigorous) method to account for this
effect is first to determine the equivalent circuit of the discontinuity.

The lumped elements of this circuit can be either measured experimentally

or calculated by one of the many analytical techniques appropriate to

the problem at hand [49,96,97]. Alongside the discontinuities of

Fig. 22 we show the equivalent circuits, some of which will be taken
up for more detailed discussion in part 2.
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SCz (a)
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antenna

'"2 Fig. 22. Some examplary discontinuities and their equivalent circuits.
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CHAPTER 1.4

FREQUENCY AND TIME DOMAIN METHODS

The preceding chapter dealt with various approaches to the

formulation of EM? interaction problems. In this chapter various methods

based on frequency-domain considerations are discussed for solving EMP

interaction problems. If the interaction between an ubj~ct (e.g., an

* aircraft) and the nuclear EM? is viewed in the frequency domain, a

characteristic dimension a of the object to the characteristic wavelength

X~ of the incoming EM?. When the ratio a/X is very small, the interaction

is said to be in the low-frequency region, and an approximate procedureI, for calculating this interacti.on can be developed by expanding the
quantities of interest in a power series of the small parameter aiX.

This case will be treated in Sec. 1.4.1. When the ratio aIX is very

large, the interaction is said to be in the high-frequency region, and

the appropriate nethod of approximation is that of asymptotic expansion

of the quantitie& of interest in the large parameter aIX. Sec. 1.4.3

is devoted to the discussion of this region. In between the low-frequency
and high-frequency regionr lies the intermediate-frequency region for

which the singularity expansion method offers one of the most efficient

techniques to calculate the interaction~. This method and its applications

will be elucidated in Sec. 1.4.2. From the low-frequency, intermediate-

frequency, and high-frequency solutions one can respectively derive by

Laplace transforms the late-time, intermediate-time, and early-time

behaviors of the interaction process in the time-domain description.

1.4.1 LOW-FREQUENCY, LATE-TIME REGION

When Lhe wavelengths of an incident radiation are considerably

greater than the relevant dimensions of the scatterer or when the

external fields change slowly ia a time interval comparable to the

transit time of the scatterer, one then has an "almost static"

situation. In this section we will discuss the interaction problem
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under this low-frequency or slow time-variation assumption. We --ill begin

with a rigorous formulation of the interaction problem via the nignetic-

field integral equation, and from it develop the Rayleigh series for the

induced current and charge densities. The first two terms of this series I
will be examined critically and their relation to the magnetic and electric

dipoles discussed. We will then go on to examine small objects on a

large structure (for example, a blade antenna or a window on an aircraft)

and see how their interaction properties can be characterized by dipoles

and how the polarizabilities of various objects are interrelated. Finally,

we will discuss the behaviors of the induced current and charge densities

in their late-time state, quasi-stationary state, and steady state and

their relations to the low-frequency solution.

1.4.1.1 Rayleigh Series

The so-called Rayleigh series is a power series in frequency. In

the s-plane, the Rayleigh series is a Taylor series about the origin s -0.

The fact that this series exists and possesses a finite radius of conver- I
gence has been proved for a smooth, finite, perfectly conducting object

[1,2]. It is believed that the radius of convergence is equal to the

absolute value of the lowest natural frequency of the object and, hence,

within this circle of convergence the Rayleigh series should converge to

the enact solution. However, one seldom goes beyond the first few terms

which usually suffice for most practical purposes.

Consider a perfect conductor immersed in a time-harmonic field

E i, . Let J and p be the induced current and charge densities with

the following low-frequency expansions

J J 0o + J 1 + J 2 +•••
Jmj +.. .(1)

0 P P1 + P2 +"'"

where the ratio of two consecutive terms (e.g., etc.) is

proportional to s.
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To find Jo0 jl pop etc. one may follow the approach of Stevenson

[3,4], which starts with a low-frequency expansion of Maxwell's equations.

Each term in the expansion requires only the solution of standard problems
4. +

in potential theory from which J, Jl PO, etc. can be determined straight-

forwardly. An elegant, and perhaps most efficient, method is to start

with the low-frequency expansion of the H-field integral equation. The

shortcoming of this method, however, is that the H-field integral equation

applies only to a perfect conductor with nonzero thickness. For a con-

ductor with finite surface impedance or a perfect conductor of vanishingly

small thickness (e.g., a thin metallic sheet) one may start with a low-

frequency expansion of the E-field equation and arrive at a set of

equations for the determination of i' •i' Po' and so on. As will be

seen below, for a smooth finite body of infinite conductivity the set

of equations resulting from the E-field equation is far more complicated

than the set deduced from the H-field integral equation.

The integral-equation method has been utilized in the past to

obtain a low-frequency expansion of the solution for a scalar boundary-

value problem (5]. For the electromagnetic boundary-value problem the

Helmholtz integral representation for the field has been employed to

examine the low-frequency scattering and the equivalent dipole moments

in terms of potential functions [6].

The point of departure is the H-field integral equation for the

current density I induced by an incident wave (•i ji) on the surface of

a perfect conductor (Fig. 1), namely

2 n(r) x [VG(r,r') xJ(r')]dS' = Ji(r) (2)
S

where I txA', and the free-space Green's function G is given by

+ e-JkRG(-r) + R - [r-i'! (3)
41rR

Expanding i in Rayleigh's series ana VG in powers of k and equating

terms of like orders of magnitude we obtain from (2)

1
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II

outward unit normal.

I- 0 vf-x-V x dS' (4a)

S
-1

2 x V 4-ýJl dS' J (4b)

S

x [VL p dS P

( 4 p)
P

=--- (-Jk) 1 R"T xm-'2 fs -1-]S

SIn the case of an incident plane wave with propagation vector and

magnetic field given by

-jit 00 e(5)
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one has n

1 0ý Ino

(6)

The chain of equations (4) enables one to determine a Rayleigh

series for J from which the Rayleigh series for p follows via the conti-
nuity equation. There are several important points which should be noted

about (4):

(a) All orders satisfy the same integral equation except for
the source terms on the right-hand sides.

(b) Eq. (4a) is an integral formulation of the magnetostatic

boundary-value problem, while (4b) contains the corresponding

formulation of the electrostatic boundary-value problem. In
fact, if one takes the surface divergence of (4b) and makes

use of the continuity equation

S.-J sp (7)

one obtains

1 + f p(r') 2 (- - - . (8)
2 'o 9 n 4ffR no0

which it the formulation of an electrostatic boundary-value

problem in terms of an integral equation of the second kind.
(c) It can be shown from (4a) that

+
Vs.Jo t 0 (9a)

if and only if V 0. It is true that V 0 for as 0 8 0

plane-wave field but not for the field due to moving charged
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II
particles [7]. If one substitutes the expansion (1) in the

continuity equation (7) and equates terms of like orders of

magnitude, one will see that the first term gives (9a) while

the second term yields

Vs - sp (9b)

Before we proceed to explore the properties of J and Ji are

the most important quantities in low-frequency considerations, let us

examine briefly what light the E-field formulation may shed on these two

quantities. On the surface of a perfect conductor one has the well-known

E-field equation

sill XJ G 3dS' + itX x f GP dS' nX~ (10a)

together with the continuity equation (7). However, (7) and (lOa) are not
well suited for low-frequency expansions. One way out of this difficulty

is to abandon the continuity equation and to use instead the following

integral relation between I and p, namely

P + f 3n p dS' + sUie Tn f GGdS' - e E (10b)

which can be obtained by taking the l-dot of the Helmholtz integral repre-

sentation of the E-field, in much the same way as (10a) can be obtained by

taking the %n-cross of that representation [8]. Now making a low-frequency

expansion of (lOa) and (lOb) one obtains

XV f , S IXU

U ItrR4o :no 04,E
1 + f -L(-L-odS' - E: "Po 3n 4 nS - ou
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spct x f dS' +o n V PldS' x (12a)

1 + plds' +spe f ds' - e (12b)

and similar sets of coupled equations for (+lP 2 ), 2 3

Eastat and (11b) can be recognized as the formulation of an electro-

static boundary-value problem, since (11a) leads to

I j o adS' + o -constant (13a)

where ° is the electrostatic potential of Pi and the constant is determined
0 0

by (llb) which, upon integration over the surface of the body, gives i
f p0 dS - 0 (13b)

If one wishes, one can solve (llb) directly and it can be shown that the

solution of (lb) will automatically satisfy (11a). On the other hand,
(12a) and (12b) for (o ), and similar equations for (,P 2 ,%sp ) etc., are

sets of coupled equations with the number of eouations equal to the number

of unknowns.

It is evident from the above considerations that Rayleigh's series

can be obtained with ease from the H-field formulation but not from the

E-field formulation.

1.4.1.2 Properties of Jo and il

We have just seen that the first two terms, I and S1, in the Rayleigh

series satisfy respectively the integral equations (4a) and (4b) and also

the differential equations (9a) and (9b). Integration of (9a) and (9b)

over the patch A, which is a part of the entire surface S of the body,

gives (see Fig. 2)

di ~0, f~tdi a~f podS (14)
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Fig. 2. Geometry for (14). 1 b unit binormal tangent to S,

C- closed curve on S bounding A, A - area of patch on S,

S - surface of body.

These equations imply that the lines of 3 form closed ioops on the surface
0

S, whereas the lines of 3terminate at charges. Thus, 1 has nothing to

do with the total induced current flowing across any cross-section of the

body [9], such as the total axial current on a cylinder.

As is evident from (9b), a knowledge of 3is sufficient for the
determination of p 0 but the reverse is generally not true. In certain

special cases, however, 13 is obtainable directly from p0. For example,

in the case of two-dimensional geometries, 13 and p 0have the same peri-

pheral distributions [10]. For three-dimensional bodies with rotational

symmetry, such as the right circular cylinder, the prolate spheroid, the

disk, etc., ll may be obtained directly from p0 via the second equation~ of

(14) if the domain A (Fig. 2) o~f integration is appropriately chosen (see

Figs. 3a- c).

In the case where the magnetic field and the propagation vector cf

an incident plane wave are respectively parallel and perpendicular to the

axis of symmetry of a body as shown in Fig. 3d, one can relate 3and p 0
by [11,12]

H 2eE Cos * 15
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(b) prolate spheroid

(a) right circular
cylinder

(c) circular disk (d) axsymmetric body

Fig. 3. Examples of axisymmetric geometries.

In this case the total axial current is zero. For the other polarization

where the electric field and the propagation vector of the incident plane

wave are respectively parallel and perpendicular to the axis of symmetry,

no similar relationship exists between 10 and

It is not unexpected that o and 31 give rise to a magnetic and an

electric dipole respectively, since lines of I from closed loops while

lines of 1 are terminated at charges. Recalling the usual definitions

for magnetic dipole moment m and electric dipole moment p [13]

+ +
m .• r XJ dS

md (16)

p - p dS J dS

S S
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one sees that J and J give respectively the static magnetic and

electric dipole moments.

1.4.1.3 Small Objects on a Large Structure

On the surfaae of an aerospace vehicle such as an aircraft there

are many small objects or inhomogeneities (see Fig. 4). These objects are

blade antenna

"aperture I
bowl with
dielectric cover

Fig. 4. Small objects on an aircraft.

physically small in comparison with the overall dimensions of the vehicle.

In addition, they are electrically small over the important portion of a 4

typical EMP spectrum. Hence, their mutual interactions as well as their

perturbational effect on the overall external interaction of the entire

structure with EMP can be characterized by their dipole moments [143.

To find the induced dipole moments for each object one will have

to solve a magnetostatic and an electrostatic boundary-value problem

which, among other things, involve the local geometry of the object.

Fig. 5 shows the appropriate static boundary-value problems one needs to

solve for a stub, a depression, and an aperture in an infinite ground

plane. The approximation of the local geometry of the large structure

by an infinite ground plane becomes better the larger the local radii
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.. ~ .4 _ (a) stub (boss)

- = -(b)depresuion

illuminated region

(c aperture

shadowregio
Fig. 5. Illustrations of static electric and magnetic field in

the neighborhood of (a) a stub, (b) a depression, and

(c) an aperture.

of curvature of the large structure are in comparison to the maximum4

dimension of the object. Generally one may have to use some canonical

geometries of finite radii of curvature, such as a sphere, an infinite

cylinder, or an ellipsoid, to model the local geometry of the large

structure. But these canonical-shaped structures introduce an enormous

amount of complexity to the analysis. On the other hand, an infinite
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ground plane will not introduce any complexity to the problem at hand,

and it will only lead to larger induced dipole moments.

There are two important points about the static boundary-value

problems depicted in Fig. 5. The exciting fields are the "short-circuit"

fields (•s¢' )' By a "short-circuit" field we mean a field that wouldsc SC
exist at the location of the scatterer if the scatterer were removed. This

means that if the scatterer were an aperture or a depression, the aperture

or the depression would be covered by isotropic conductors. In the language

of boundary-value problems a "short-circuit" field is the total field far

away from the scatterer on an infinite plane. This field is related to

surface current density . and surface charge density p by

Esc - p/e (17a)

S-x T (17b)
sc n

where is the outward unit vector normal to the surface of the large

structure. To find I and p one has to solve an external interaction problem

in which all small objects are "removed" from the surface of the large

structure. It is thus seen that s and s will contain those resonancesBc sc
of the large structure whose resonance-wavelengths are much greater than

the dimensions of the small object.

To solve the static boundary-value problems of Fig. 5 for the dipole

moments one may start with the Laplace equation for the magnetic scalar

potential 0m and the electric scalar potential •, viz.,

V2•m -o (1a
S(18a)

v 2• 0 (18b')

with rm ÷ - r.sc and r +- r.s for observation points r far away from

the object, and the usual boundary conditions that (D/an) m and 0 vanish

on the conductor's surface. There are many methods of solving (18). If
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the surface of the object permits separation of variables, the eigen-

function expansion method is the natural one to use. If the object is

of arbitrary shape, the integral equation method aided by numerical

quadrature is more promising. The integral equations derived on the
basis of (18) and the corresponding boundary conditions are scalar and,

hence, are much simpler than their vector counterparts (4a) and (4b).

But it must be emphasized that (18b) together with the corresponding

boundary condition does not in general yield a complete information on

il' the second term in the Rayleigh series. Eq.(18b) gives the informa-

tion on the surface charge density which, however, is sufficient for the

determination of the electric dipole moment and, of course, all electric

multipoles.

The above considerations can be put on a firm mathematical basis by

taking the low-frequency limit of the integral-equation formulation of

the problem appropriate for Fig. 4. Such a formulation would involve

the dyadic Green's functions of the first and second kind [1.5],G and

G2 , which satisfy the boundary conditions

(n×Gr,r ) , xVX 2 r,r 0 (19)

on the surface of the large structure. It suffices to mention here that
-+4
G is useful for the problem of a small stub on a large structure, while

G2 is appropriate for the problem involving an aperture or a depression

in the surface of a large structure.

1.4.1.4 Dipoles and Polarizabilities

In this section formulas will be given to calculate the dipole moments

and polarizabilities of an object in free space, an aperture in a ground

plane, a boss on a ground plane and, finally, a depression'in a ground

plane. There exist certain important relationships among the components

of the electric and magnetic polarizability tensors. These relationships,

among other properties of the polarizabilities, will be discussed.

18
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1.4.1.4.1 Object in Free Space

The static dipole moments of an object in free space are given by

the static limit of the general definition (16), viz.,

+ 1I a~s, p -=od (20)

+ +

where S is the surface of the object. Since m and p are linearly related

to the incident fields ji and ýi respectively, one has the following

general relationship

+ +i +i (1
p e P .H(,

where Pand are respectively called the electric and magnetic polariz-

ability tensors. No matter how tortuous the surface of the object may

be so long as the object is composed of reciprocal material, P aud are

always symmetric, i.e.,

Pij - PJ.' Mii =M i (i,j = 1,2,3) (22)

This symmetry property follows from a general theorem on the "generalized

susceptibility" [16]. Thus, in general there are only six independent

components in PiJ or Mij. Furthermore, since they are real and symmetric

there always exists a coordinate system in which Pij or Mij is diagqna-

lized; that is to say, there exists a coordinate system in which only

three parameters are needed to characterize P or M.

In addition to the existence of many inequalities among the components

of P andM [17,18], there are certain special cases where P and M are

F• directly related to each other. For a body rotationally symmetric about,

say, the 3-axis one has

P M 0, i j
ij ij

ilPI " F2 2  M Ml 2 (23)

P1 1 =22' 11 2

11 233
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where the last relation follows from (15) and the first two are obvious

from the symmetry of the problem. Even among the non-vanishing para-

meters of (23) there exist a number of conditions. For more detail the

reader may consult [18].

For an ellipsoid, which can degenerate into a prolate spheroid, an

oblate spheroid, a sphere, an elliptic disk, or a circular disk, there

are many interesting relations among the P and M [19]. Let V denote

the volume of the ellipsoid and let the coordinate axes be along the
principal axes of the ellipsoid. Then [19]

Pij =Mij =0, 1O

1 1 1
P- (24)Pi ii V

3i

Eqs.(24) show that one needs only two independent parameters to characterize

the low-frequency interaction properties of an ellipsoid.

Once p and m are known, the field can be calculated by [13]

+ 4.
E _ _! VX (pxVG) + jwii mxVG

C (25)

(I - V(xVG) - jw pxVG

where G is the free-space Green's function given by (3).

1.4.1.4.2 Aperture in Ground Plane

The dipole moments of an aperture in an infinite ground plane are

tricky to define becouse of the presence of the ground plane (Fig. 5c).
For one thing, the groimd plane divId&. the entire space into illuminated

and shadow regions, making it necessary to have oppositely directed dipoles

for the scattered field in each of these two regions. What is more, the
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relevant excitation field in the low-frequency limit is the short-circuit

field (1•c sc ), implying that factors of 2 will crop up here and there [20].

In view of the duality between E and H in Maxwell's equations, one

would naturally introduce pa and ma as

pa r JmdS
A (26)

ma " r PmdS
A

in complete analogy to the general definition (16). Here A is the surface

of the aperture, and and pm are the magnetic surface current and charge

densities related to the total aperture electric field i bya

I -214t Pum --I +S (27)m n a m s sm

wherel is the unit normal vector pointing into the illuminated region.
n+

With the definition (27) one can show that Pa and m a, as defined by (26),

give the correct total penetrant field in the shadow region via formula

(25). Substituting (27) in (26) and taking the low-frequency limit one

obtains a simpler working definition for +a and Is, namely

a a

Pa - 2e 0 dS
aA (28)

.4. m -25 r HdSa f n
A

where 0 is the electrostatic potential and Hn is the normal component of

the magnetic field (20].

Although Pa and m give the total penetrant field via the free-space
dipole field formula (25), they are not too convenient to use for most

interaction calculations because a cavity and/or cables oftea exist

behind an aperture, in which cases the ground plane is part of the cavity
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or part of the transmission line. This means that the dipole moments,
4.
Pai and mi, defined in the presence of the ground plane, are preferable

to p and ma. They are related simply by

+ il + i+
Pai Pa' mai 2 a (29)

Next, we introduce the electric and magnetic polarizabilitiesa e and
a through

m

p sc *E , m a-H (30)Pai - Q'e *sc a m sc (30)

where the - sign in the second equation of (30) is needed, so that the

components of cim are positive. Again, it is important to remember that

ai and mai are defined for the shadow region and that their directions

must be reversed for the illuminated region.

Since Esc is always perpendicular to the ground plane, a e has only

one non-vanishing component. On the other hand, i sc may have two inde-K 4+-

pendent components for a given coordinate system, and hence a m is a

two-dimensional symmetric dyad which can always be diagonalized by an
orthogonal transformation. There exists a relationship between (aeea)

of an aperture and (Vt) of the complementary disk via the Babinet

principle. It can be shown that [21]

++ (1
e disk' m 4 disk (31)

Thus, the polarizabilities of an ellipsoid discussed previously can yield

in its limiting forms the polarizabilities of an elliptical and a circular

hole.

1.4.1.4.3 Boss on Ground Plane

A boss is a protrusion on a ground plane (Fig. 5a). The blade

antennas on an aircraft are one such example. Let Pb and be the dipole

moments giving the total scattered field via the free-space dipole field
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formula (25). Let pbi and i be the dipole moments radiating in the

presence of an infinite ground plane. Then, with Sb denoting the surface

of the boss one has

Pb "2 r PO dS, M - rx 10dS

b b

+b2~ + +i2 (32)Pbi Pb i 2 mb

Pbi e sc mbi am m'sc

IfVandV are the polarizabilities in free space of the boss plus its

image, then it is obvious that
II

5•~ -++V%. " (33)
8e 2 ~ 8m 2

1.4.1.4.4 Depression in Ground Plane

Flush-mounted antennas on aircraft are examples of depressions in a

ground plane (see Fig. 5b). Except for a hemispherical bowl [22] there

are no known solutions for other three-dimensional depressions. Let P

and md be the dipole moments that give the total scattered field via

formula (25) and let Pdi and mdi be the dipole moments defined with the

ground plane. The situation is similar to that of an aperture except

that now there is only the illuminated region. Thus

Pd -2  mdS= Md" rPdS
A A

+ 14 + 1+
Pdi 2 Pd mdi 2 "d (34)

+ +++
Pdi T e sc mdi Ym sc' ii
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where A is the area of the depression's mouth. For a hemispherical

depression y has an exact closed form, whereas - can be obtained onlye m cnb ba lol

approximately [22]. As would be expected, the polarizability values

are smaller than the corresponding values of a circular aperture. Thus.

it is reasonable to assume that the polarizabilities of the aperture A

in an infinite ground plane (i.e., when the volume of the depression

becomes infinite while its opening remains unchanged) give the upper

bounds of yand.

At this point it is a good idea to summarize the above results.
+ 4 + +

The total fields E, H radiated by the dipoles p, m are given by (25).

The values of + and 1 to be used in (25) for the four different situations

discussed above are tabulated in table 1. It should be pointed out that

TABLE 1. DIPOLE MOMENTS TO BE USED IN EQUATIONS (25)

Body in Aperture in Boss in Depression in

Free Space Ground Plane Ground Plane Ground Plane

p ae ac 2 O Be 2c e Bec

4. ~ i4-ý-**_ + +* I-
m M -2m sc m sc m sc

4-0

in the case of an aperture in a ground plane the values of p and a in

table 1 when substituted in (25) give the total fields in the shadow region

The above discussions have been focused on three-dimensional objectL

and two-dimensional apertures. In the case of two-dimensional objects
or one-dimensional apertures, the magnetic polarizability per unit length

V is directly related to the electric polarizability per unit length

The truth of this statement can be seen from the following simple

considerations. Let the z-axis be the axis of a two-dimensional object,

the y-axis be directed along the incident magnetic field and the
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4-

x-axis along the incident electric field Then the electric and

magnetic scalar potentials 0 and *m form the complex pctential W, namely

[23] Kw * € + J~(35)

which satisfies the Laplace equation. From the theory of conjugate func-

tions one can show that the electric polarizability tensor PV and the

magnetic polarizability tensor V are related by

"+PV -1 X'7" (36)
z

The discussions thus far have been limited to perfectly conducting

bodies. It should come as no surprise that the low-frequency interaction

properties of a dielectric/permeable body are predominantly characterized

by its electric and magnetic polarizabilities. For more detail the

interested reader should refer to [24).

1.4.1.5 Quasi-Stationary, Late-Time Considerations

As is evident from (4) each term of the Rayleigh series for the

current density is given by

0 0

3 - ~(37)
1 1

and so on, where is the stati- dyadic integral operator inverse to

the integral operator on the left-hand side of (4). For separable

surfaces, C takes a very simple form. For example, in the case of an

infinitely long cylinder (Fig. 6a) we have
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a)

Fig. 6a. Incident magnetic field perpendicular to the axis

of an infinite cylinder.

Z- 21 1' H sini (38)
0 z o

and in the case of a sphere (Fig. 6b) we have

•.~~ ~ 3 q, •o"-•Hsin 6 (39)
2 0~

The time-domain series corresponding to (37) is

o(t) - . oWt

M W (40)

W(t) - M.(t) +;o-2ixX d

and so on, where the double dots denote two time-differentiations and TR
is the unit vector in the direction of i (see Fig. 1). The dependence of

I etc. on • (the position on the surface of the object) should be

understood and has been omitted for simplicity. It is reasonable to call
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HH

IJ -0  Wb

Fig. 6b. Incident magnetic field along the polar axis of a sphere.

(40) a quasi-stationary series, since this series holds true if the electro-

magnetic phenomena are slowly varying during a time interval comparable

to the characteristic or transit time t c of the body. In fact, the series

(40) can also be obtained by expanding the time-domain H-field integral

equation, the inverse Fourier transform of (2), in powers of t . Thus,c
the quasi-stationary series makes sense if the pulse width of the incident

wave is much larger than t c(Figs. 7a,b), or if the speeds of the charged

particles are very small compared to the speed of light in the surrounding

medium (see Fig. 7c), as is often the case in most SCEMP interaction

problems. Of course, the prerequisite for the series to be valid is

that all early-time transient effects have subsided; that is to say, the

object is well immersed in the incident pulse or the charged particles

4 have long ceased their violent motions. In this sense (40) may also be

termed a late-time series.
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inddent pulse x-O x-

(a)

V

(b)(

Fig. 7. (a) A pulse incident on a body, (b) a step-function wave

incident on a body, and (c) a charged particle q moving

with velocity v near a body. j
Let a plane-wave pulse travel along the positive x-direction and

impinge on an object as shown in Fig. 7a. Then, the incident current3i(c,t) is given by

•(rt) -*I" X if (t - X/c) (41)

whore z lies between x-0 and x-Z. Expanding f in a Taylor series and

introducing tc- 1/c one gets

2Af• (t -x/c) - f (t) t tf (t) + T• t2f (t) . . . . (42a)
c

which is a convergent series if

Ifl > Itcfl, III > Itc il,' (42b)
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In physical terms this means that the incident wavaform does not vary

much during a time interval equal to the transit time te. When this

condition is met one then has, according to (40),

- '01((t)(

2(r t) - 2 (r)f(t) (43)

~'(r t) r- ~ ) t

where f (n) denotes the nth time derivative of f and etc. are+

vector functions depending only on the observation point r on the surface.
If one reconstructs the waveform for the induced current 1(+,t) from the

quasi-stationary or late-time series (43), 1 will be different from the

waveform of the incident pulse because the n's are generally different

from the coefficients of the Taylor series (42a).

Fig. 7b depicts a step-function plane wave striking an object. In

this case we have

f(t-x/c) u.u(t-x/c) (44)

where u is the unit step function. Clearly, after all the initial transient

phenomena have subsided there remain

23(+r,t) -%(r (r45

po(r,t) -_ 4.(r)

where the second equation follows from integrating the time-domain version

of the continuity equation (9b) from -• to t with the help of the second

equation of (43).
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If the incident wave is, say, a step-function sine wave with angular

* ~frequency mo$ the induced current and charge densities will eventuallyI

oscillate at wowith different phase shifts. This state of affairs is

called the steady state, as is well known in all branches of the physical

sciences. Of course, the static state (45) is a special case of the

steady state.

1.4.2 INTERMEDIATE-FREQUENCY, INTERMEDIATE-TIME REGION

Following the low-frequency, late-time region is the intermediate-

frequency, intermediate-time region which is characterized by the ratio

L aIX (ratio of characteristic dimension of scatterer to characteristic

wavelength of incoming EMil) that is neither very small nor very large

compared to unity. Therefore a power series expansion or an asymptotic

expansion in aIX cannot be carried out to good advantage, if at all. On

the other hand, the intermediate-frequency region can be very important

in electromagnetic problems involving a broad-band source of excitation

like an EWI. An efficient mathematical technique to calculate intermediate-

frequency scattering and intermediate-time behavior is therefore much inI

demand for analyzing the EMP interaction. The singularity expansion method

offers one such technique that is short of solving the interaction problem

exactly [25- 27].

1.4.2.1 S~ingularity Expansion Method

The singularity expansion method (sometimes known as SEM) consists of

characterizing the physical quantities in EMIP interaction problems by their

singularities in the complex frequency plane. The idea has its origin in

the classical analysis of the transient responses of lumped network cir-

cuits, and can be introduced in this connection.

1.4.2.1.1 Transient Analysis of a Lumped Network Circuit

Consider the simple LRC series shown in Fig. 8. It is driven by a

transient voltage source v(t). As a consequence the circuit develops a

transient response in the form of a current i(t). This time-dependent
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+M C
v( t) IT

R

Fig. 8. A lumped LRC series circuit driven by a transient

voltage source v(t).

phenomenon is described by a second order, nonhomogeneous, linear

differential equation in time

(LA- + R + ) i(t) - v(t) (46)
dt 2 t Cd

The current i(t) can be calculated by solving an initial-value problem.

The classical tool for analyzing initial-value problems is the

Laplace transform. Let f(t) be the time-domain response of a physical

system, such as the LRC circuit, to a transient excitation. One can

introduce a complex frequency s, and write the frequency-domain response

F(s) as the two-sided Laplace transform [28] of f(t)

F(s) f e-Stf(t)dt (47)

If f(t) is reasonably smooth and vanishes sufficiently rapidly as t +

F(s) is an analytic function of s except at a set of singularities. The

location, number, aud type of the singularities are determined by the

physical characteristics of the syetem and the excitation. In fact,

most of these s-plane singularities can be put in a one-to-one corres-

pondence with certain so-called natural oscillation frequencies of the

system.
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The inverse Laplace transform of (47) is given by

1 fn00
1 ~+jo.st

"" W e F(s)ds (48)

Here S is a real constant so chosen that the singularities of F(s) all

lie to the left of the path of integration. The confinement of the

singularities of F(s) to the left half-plane of the s-plane is guaranteed

by the principle of causality. It follows from the identical vanishing

of the response f(t) before the arrival of the excitation.

Applying the Laplace transform to (46), one obtains the solution

in the frequency domain

I(s) = Y(s)V(s) (49)

where Y(s) is the admittance of the LRC circuit at complex frequency s,

given by

Y (s) 2 s (50)
Ls + Rs + I/C

The singularities of I(s) in the s-plane are contained in Y(s) and

V(s). Eq.(50) shows that Y(s) has two simple poles situated at s- s+

with

sL + 1 (51)

Both these poles are located in the left half-plane, since Re s+ < 0.

Depending on the sign of the discriminant in (51), s+ and s_ are either

both real (in which case the poles both lie on the real axis) or they

are complex conjugates (in which case the poles lie symmetrically with

respect to the real axis). This symmetry in the pole distribution

with respect to the real axis is a consequence of the fact that L, R and

C are all real physical quantities.
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The admittance Y(s) in (50) can be rewritten in the following partial-

fraction form

Y(S) L(s+ - ss+ s (52)

This is in fact a singularity expansion of Y(s). That is, Y(s) is here

expressed as a sum of terms, each one of which exhibits one of its

singularities.

A singularity expansion of V(s) can be performed in like manner.

For definiteness, take v(t) to be a step function:

0, t < 0

V(t) (53)
V, t > 0

That is to say, the applied voltage source is switched on instantly at

t- 0 to full strength V0 , and maintained at this value for all time

t > 0. Its Laplace transform is

V
V(s) -Si (54)

s

This expression is already in the form of a singularity expansion, showing

a simple pole at s- 0.

The singularity expansion of I(s), which is really what is most

interesting as far as solving the transieiit-response problem is concerned,

can be derived by combining (52) and (54). One obtains

I(s) - L(s+ s) s-s+ s-8j (55)

This expansion shows two simple poles at s- s corresponding to the two

natural frequencies of the LRC series circuit. Note that in this particular
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example the pole of V(s) at s- 0 is eliminated by the factor s in the

expansion of I(s). But, in general, the source introduces singularities

into the response, which do not correspond to natural frequencies of

the system.

The transient response current i~t) can be obtained by performing

* the inverse Laplace transform

K 2nj Q+jo
K i(t) - ' e I(s)ds (56)

In this case the constant R2 can be chosen equal to 0. The integral is

easily evaluated by the method of residues, since the open straight

contour can be closed by a right semi-circle at infinity for t < 0,

and by a left semi-circle at infinity for t > 0. The result of the

integration is

0, t < 0

V 0  [ + t 5t1
e t-ej0

Each pole in 1(s) is seen to contribute a damped sinusoid to i~t).

1.4.2.1.2 Generalization

The above transient-response analysis of a simple lumped network

circuit by means of the Laplace transform contains practically all that

there is to SEN. In the application of SEN to more advanced electro-

magnetic problems, certain complications will inevitably arise. But i
I1 the basic features of the analysis will persist. One anticipated

complication will be the appearance of spatial dependence. As soon as

one goes beyond lumped-parameter circuits, one encounters distributed

systems. These are described by partial differential equations or

H integral equations, which differ from the ordinary differential equation
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(46) in the dependence on spatial coordinates. Another anticipated

complication is that the number of natural frequencies will be much

larger for a distributed system, and thus many more singularities will

show up in the s-plane.

A feeling of the state of affairs in the s-plane representing the

transient response of a distributed system, such as the response of an

aircraft to an EMP, can be gleaned from the following somewhat simplistic

picture. Nevertheless, this picture actually obtains when one uses

approximate numerical methods to perform the singularity expansion.

Let the applied excitation reach the system at time t- 0, and let the

system's response be denoted by a real function of space and time

f(+,t). This function can either be a scalar (such as the surface

charge density) or a vector (such as the surface current density) or

some other more exotic physical entity. Its Laplace transform F(r,s)

will be analytic in the right half-plane Re s > 0. Its singularities

are confined to the left half-plane Re s < 0. Very often, they consist

of a host of simple poles lying either along the real axis or occuring

in complex-conjugate pairs as shown in Fig. 9. This symmetry of the

singularity distribution with respect to the real axis is a consequence

of the reality of f(r,t), so that one can deduce from (47), the Schwarz

reflection principle

F (r,s)- F(r,s) (58)

where the asterisk denotes the complex conjugate.

Let F(r,s) be written in the form of the following singularity

expansion

F - m1 s + (59)F~r~s5 I s -am
9=1 m s - s

The natural frequencies s can be complex with Re s < 0 or real and
m m

negative. The residues R can be complex or real and are functions ofm
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Fig. 9. Example of the complex-frequency-plane singularity pattern

of a physical system.

position. They are proportional to the natural modes of oscillation of

the system at the respective natural frequencies. The constants of

proportionality measure the extent to which these modes are agitated by

the source of excitation.

Eq.(59) is not the most general expansion for n'( ,s). One can clearly

add an arbitrary entire function to the right-hand side without affecting

the singularity pattern in the finite s-plane. However, this entire

function will alter the asymptotic behavior of F(r,s), making it approach

a nonzero value as s t -. Indeed, the entire function is closely related

to the high-frequency response of the system. But if the excitation

applied to the system is a pulse, its high-frequency components are

vanishingly small. The response F(r,s) can be expected to approach zero

ass a * as is the case in (59).

The inverse Laplace transform can again be performed by the method of

residues, and one finds that for t > 0

M +Sm s*St (60 ; If(r,t) - (r)e + R (r)e (60)
2001
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This shows the time-domain response f(r,t) as a sum of damped sinusoids.

Each term describes the exponential decay of a natural mode after its

excitation by the applied source.

Eq.(59) is an expression for studying the system's response to an

intermediate-frequency excitation. The response of the system in the
++frequency domain is given by the value of F(t~s) along the jw-aris of

the s-plane. At real excitation frequency w, the response is F(r,jw).

From (59), it is clear that the contributions to F(r,jw) come mainly

from those poles of F(rs) that lie close to the point s-jw. In fact,

a few nearest poles in the singularity expansion will generally repre-

sent the response with sufficient accuracy. Thus one sees that, at

low and high excitation frequencies, the usual expansion of the

frequency-domain response of a system is in terms of the ratio of

the system dimension to the wavelength, whereas at intermediate

excitation frequencies, a useful expansion is a singularity expansion

in terms of the set of natural frequencies of the system.

Eq.(60) is valuable for studying the system's time-domain response

at intermediate times. Each damped sinusoid appearing therein has its

own characteristic damping constant which is directly proportional to

the distance of the corresponding s-plane pole from the imaginary axis.

The decay time of the corresponding natural mode is inversely propor-

tional to this distance. At the very earliest times, immediately after

the arrival of the applied excitation, the time-domain response f(tt)

is made up of contributions from each of the excited natural modes. I
However, as time goes on, the shorter-lived modes die out one by one,

and progressively fewer terms need be retained in f(tt), so that at

late times none but the contribution from the pole closest to the

imaginary axis survives. One therefore concludes that at an inter-

mediate time t, only those poles with decay times comparable to or

L greater than t will contribute substantially to the time-domain

response fCG,t).

The characterization of a system's response by a finite collection

of simple poles, as exemplified by the singularity expansion of F(,s)
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in (59), is a technique of great aesthetical appeal for studying transient

electromagnetic problems. This type of basic singularity pattern is really

what one comes up with when one approaches the singularity expansion by

purely numerical methods. But, analytically, more complicated situations

can conceivably arise. First, the number of natural frequencies of a1< distributed system is really infinite, so that the set of poles is
actually infinite. The integer M in (59) should be replaced by -. This

raises the question of the convergence of the infinite sum; and one may

have to perform appropriate rearrangements of the terms to achieve

convergence. Second, some singularities of F(4r,s) may appear as branch

cuts. A branch cut is essentially a continuous one-dimensional distribu-

tion of poles, and turns up whenever the natural frequency spectrum of

the system contains a continuous portion. Third, some singularities of

E(-r,s) may appear as multiple poles rather than simple poles; but this

new feature can be easily accommodated in the singularity expansion.

One suspects that multiple poles can occur only under the most fortuitous

circumstances, when the parameters of a physical system are accidentally
L so interrelated that two or more simple poles coincide.

instructive to analyze in detail a number of exactly soluble electromagnetic

problems in the context of complex-frequency-plane singularities.

1.4.2.2 s-Plane Singularities in Transmission-Line Analysis

A transmission line is an important electromagnetic system that is

only one step removed from a lumped network circuit in order of complexity.I
Its behavior is described by a pair of partial differential equations

involving one spatial dimension as well as time. These equations are

often simple enough to permit exact solution. A close study of the exact

solution can shed valuable light on the basic features of singularity

expansion.

1.4.2.2.1 Finite Transmission Line

open circuited at both ends. Let it lie in the z-direction from 7- 0I
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to z- 1, as shown in Fig. 10. The inductance, capacitance, resistance

and conductance per unit length of the line are assumed Lonstant. They

are denoted respectively by L', C', R' and G'.

(a) z-O z-Ati

- 4.

Mb) C1p G'

Fig. 10. A finite two-wire transmission line and its equivalent

circuit per section.

Let the line be excited by a transient distributed voltage source
v (z,t). Then the shunt voltage v(z,t) and the series current i(z,t)

vary along the line according to the following pair of coupled partial

differential equations in space and time

(+(L' -L+ R') i v.

ai +(¢ C' )L+G

In the complex-frequency domain these equations become

dV + Z'I - V
dz B

(62)

dI+ Y'V -0 (
dz 20
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where Z' and Y' are respectively the series impedance and the shunt

admittance per unit length given by

Z'(s) I L's + R', Y'(s) - C's + G' (63)

Eliminating V from (62), one obtains a nonhomogeneous second-order

ordinary differential equation for I

2+ i2 ) I = - Y'Vs (64)

with
k 2(s) = - Y'(s)Z'(s) E 2 (s) (65)

The open-circuited line has the following homogeneous boundary conditions

I(z0 o) - I(z ) - 0 (66)

The solution of (64) satisfying (66) can be expressed as

I(z,s) - Y'(s) G(z,z')Vs(z',s)dz' (67)
where G(z,z') is a Green's function determined by equation

(22+ k2)G(zz') - - 6(z- z') (68)

and the boundary conditions

G(O,z') - G(Z,z') - 0 (69)

For the purpose of deriving a singularity expansion for I from (67),

it is convenient to expand the Green's function G(z,z') in terms of the

eigenfunctions pn(z) of the Hermitian operator d2/dz2

2 2
d - kn~ (70)
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The eigenfunctions which vanish at the ends z- 0 and Z are

, (z) - in(k z) (71)

with the eigenvalues

k n - 1,2,3, ... (72)

These eigenfunctions are real and form a complete orthonormal set

f *a (z)*,(z)dz 6u (73)

so that one can expand G(z,z') as

G(z,z') a n~n(Z) (74)
n-i

Substituting this expression in (68) and evaluating the coefficients an

one obtains

G(zz')- 2 n(
n-i k2  k2

n

Upon combining (67) and (75) the following explicit representation of the

solution I of (64) results

90 Y'(s)Xn(s)
I(z,s) 1 2n(z) (76)n1 k2 - k2(s)n

n

with

X(s) - V (z'W,)4n (Z')dz' (77)
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The singularity expansion of I(z,s) is readily derived from (76).

From (63) and (65) one first obtains the following partial-fraction

decomposition

Y'I(s) 
( - [ (S+)Y_)n) 1

k2 _ k(s) L'C' (an+ - Sn-) L a 'n+ a " (78)

where s and s are the roots of the equation

k2 -k 2 (s) -0 (79)

or, more explicitly,

l 'G'\R' ,n' (.2
2\n±L' C '/2 V 22(0=- -I--- c (80)

Eq.(78) shows that I(z,s) has simple poles at s - sn in the s-plane.

These complex frequencies are precisely those at which the homogeneous

part of (64), with V. - Q, has nontrivial solutions satisfying the boundary

conditions (66). They are in fact the natural frequencies of the finite

transmission line. The eigenfunctions in (71) are the corresponding

natural modes.

Besides the poles at the natural frequencies s n+ , I(z,s) also

contains the singularities of the factor Xn (s) contributed by the source

V. One can split up the singularity expansion of I(z,s) into two parts

I(z,s) - II(z's) + 12 (z,s) (81)

A such that I contains all the natural-frequency singularities, and 12 all

the source singularities. One finds that

q(Z) rx(s )Y'(s )xs )Y( 1
11 (Zs) .. nn n+ (82)n-1 L'C' S n _ L n - an+ n-
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and that

G I-X_ (S -,o÷(
1(z,s) _ n n- + n

2 ~ n-1 L'C' ( S +-s) L -Sn

lxn(s) - Xn(s _)IY'(sn()
(83)

S-6S n-

If the square root in (80) is real for all n, then one has s Sn+

and (82) becomes

I (~) nl s + +fl+ (84)
*('n+)- -

n-1iL s- + s - s*+

with

Xn(sn+) Y,(S+)

R (zs n+) n* ) n (z) (85)
L'C' ( Sn+-*n+

Use has been made of the relation

x (s*+ - X*(Sn+ (86)

following from the fact that the source function vs (z,t) is real. It is

clear from (80) that the poles ot Il(z,s) all lie along a straight line

parallel to the imaginary axis as shown in Fig. 11. If the square root

in (80) is imaginary for some n, then some of the poles lie on the

negative real axis. Note that the two terms inside the square brackets

in (84) should be summed together as a single unit. If they are summed

individually, the individual infinite sums may diverge.

The current 12 (z,s) in (83) is analytic at the natural frequencies

Sn+. Its singularities are due solely to the source V Take, for

definiteness, the source vs(z,t) in the form of a step function in time
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Fig. 11. Complex-frequency-plane singularity pattern of a finite open-

circuit transmission line. The pattern consists of an infinite
array of simple poles parallel to the imaginary axis.

S0 t <0

v (z,t) (87)

o(Z) t>0

Its Laplace transform is

v5 (zs) 0- (88)

showing a simple pole at s-0. The function Xn(s) becomes

W

X (s) =;- (89)

with Wn being real and given by
Li

Wn j go(z')4n(z')dz' (90)
n 0 n
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Substituting (89) in (83) one finds that 1
"2 L'C'(I(s-+-a_ L Sn+ Sn-

showing the same simple pole at a- 9 us Va

1.4.2,2.2 Infinite Transmission Line

Suppose now the transmission line in the above example becomes of
infinite length. Its behavior is still governed by (61), but its range
is extended to the infinite interval -• < z < -. Then (64) can be solved
by using the Fourier integral. The solution is

I(zs) p(z)dp (92)
- P k (s) i

where now
• (z) - --

(z e-jpz (93)

X -(s) - Vs(z,H)I* (z')dz' (94)

Eq.(92) is obviously a generalization of (76). In place of the infinite-
sum representation in (76) for the current in the finite transmission line,

one has here an infinite-integral representation when the length of the
transmission line grows to infinity.

The s-plane singularities of I(z,s) are a sum of those of the inte-
grand in (92). As a function of a, the integrand has singularities at
the zeros of the denominator p2- k2(a), in addition to whatever singularities
the source factor X (s) may contain. One has

p

2' 2
2p k2 (s) " L'C'(s- sP+)(s-s p) (95)
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with

* ± - (s)± P(R+) (96)p± 2 L ' + ILC

Thus the intrgrand has two simple poles at s - a and sp. The locations

of the poles depend on the continuous integration variable p, instead of

on an integer n in (80) for the finite line. Under integration, p varies

continuously from -* to c. These poles then trace out a branch cut in

the s-plane for l(z,s), as shcwn in Fig. 12. The branch cut has an

Im S

Re s

Fig. 12. s-plane singularity pattern of an infinite transmission

line. The pattern consists of branch cuts.

infinite portion parallel to the imaginary axis, as well as a finite

portion along the real axis. The latter portion is due to those values

of p for which the square root in (96) is purely imaginary.

The existence of the branch cut for the infinite transmission line I
may well be deduced by letting the length Z of the finite line tend to i
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in (80). In this limit the poles of the finite line in the s-plane

become densely crowded together. At infinite Z, the pole array merges

into a continuum and forms a branch cut.H

be The appearance of the branch cut for the infinite line is also to4

beexpected from general considerations. There is a one-to-one corres-
pondence between the s-plane singularities auid the natural frequencies

of a physical system. The poles correspond to a discrete natural-frequency

spectrum, while a branch cut corresponds to a continuous spectrum. It is

well known that a finite transmission line has a discrete spectrum, i.e.,

only at a discrete set of frequencies can excitations be produced along

the line which satisfy the boundary conditions at the two ends of the

line. By contrast, an infinite line has a continuous spectrum. At each

and every frequency, excitations can propagate freely along the line; and

all frequencies.

The singularity expansion for the transmission-line voltage V(Z,s)

can be derived from that for the current I(z,s) by using (62).

1.4.2.3 s-Plane Singularities in Scattering Analysis f
Of greater complexity than the transmission-line problem is the

problem of transient electromagnetic scattering from a conductor. This

scattering problem is central to the external interaction of an aircraft

with an DEP. The response of the conductor to the incident electromagnetic

transient is in the form of an induced surface current density. Just as

for the current along a transmission line, this surface current density

can be characterized by singularities in the complex frequency plane.

These singularities are closely related to the properties of the conductor
and the incident wave. Each singularity belonging to the conductor I
corresponds to the frequency of a certain natural mode of the conductor.

The response in the frequency domain can be expanded in terms of these

singularities. In the following the singularity expansion of the induced

~; i surface current density is derived and examined for an exactly soluble

scattering problem. I
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Consider the scattering of an arbitrary incident electromagnetic wave

by a perfectly conducting sphere of radius a and centered at the coordi-

nate origin, as shown in Fig. 13. It is well known that this problemF can be solved exactly by the method of separation of variables.

incident wove

XI

Fig. 13. Scattering of an arbitrary electromagnetic wave by a perfectly
conducting sphere centered at the coordinate origin.

In the frequency domain the Maxwell equations in free space outside

the sphere read

= 0 V (Vr,s) - s° 0 (r, ,)
0 (97)

.•(,s) -o, V X•k(s) - s )

The fields and can be derived from a pair of scalar Debye potentials

U and V

- - Vx (jk'U + x VV) (98)

Z 0 H V x (r x VU - jkrV)

where

k-J sa/c-Jy (99)
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The Debye potentials are both solutions of the Helmholtz equation

(V +k2 - 0, (V +k )V - 0 (100)

U generates a TE wave and V a TM wave relative to the r-'irection. They

can be split up into an incident part and a scattered part

U Ui + UsV V+ Vs(01u-u + , V -v +v (101)

The incident Debye potentials can be derived from the given fields

of the incident wave. They have the following general expansions in

terms of the spherical wave functions

Ui(r,s) 0 1 A m(s)JI(kr)Y (eO )

(102)
Go £

V i(,s) - I I B m(s)i (kr(1(0,))

where J is a spherical Bessel function and Yim a spherical harmonic.
The latter is defined by

S P+1 m Pm(cos m )ejmo (103)
YM 41 (Z + m) I e

with Pm denoting an associated Legendre function. Y satisfies the

orthonormality relation

do d6 sin 0 Y* (0,o)Yi, ,(e,0 ) - 6ZZ16MMI (104)

lNote that in (102) the term P-0 is absent since it does not give rise

to any fields.
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The scattered Debye potentials are calculated by imposing the

following boundary conditions at the surface of the sphere r-a

U i +us - 0, (rVi + tVs) - 0 (105)

I 
The results are

=i j- (ka) (
U (r's) At (S) -h 2) (kr)Y z(1

2.-i min2 ' -xka . ~ m0~
(106)

S(rs) - I B (s) hka~ (kr)Y (6,0)
ku MM- 2m C,'(ka) X. 2m

where h is a spherical Hankel function of the second kind, and

p(ka) - kaj (ka) , 2C(ka) - kah(2) (ka) (107)

The prime on and •2 in (106) denotes differentiation with respect to

the argument.

The surface current density • induced on the sphere is related to

the total magnetic field by

r H(i + H) (108)

From the Debye potentials calculated above one obtains after some algebra

az ~ o A,~s k( sin 0 Do

' .

+ B (S ) -Y Y2 (0,0•] (109)

zm __ ( Am) -a 6 'EMaq•

J•,(0,4,s) ao 2.-i m-- m •(ka) DO X2 0 0(

+ B .m(s) q(ka) sin 0 • Y2m(,4)0 (110)
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Eqs.(109) and (110) show that the s-plane singularities of both

components of the induced surface current density J are contained in the

two types of factors A m/C and B m/k1. The'frst factor originates from

a TE mode, and the second from a TM mode. The singularities contributed

by A and B are all due to the incident wave. Those contributed by

i/;£ and 1/;' correspond to the natural frequencies of the conducting

sphere. By (99) and (107) and the definition of the spherical Hankel

function, one has

1 Zsa/c

•(ka) (polynomial of degree X in s)

1 (l i sa/c______+ e (112) A
ý'(ka) (polynomial of degree Z+1 in s) (112

Consequently 1/;, has £ simple poles, and i/, has Y+1 simple poles, in
the finite s-plane. They both have an essential singularity at infinity'

but tend to zero exponentially as s a • in the left half-plane.

Eqs. 109) and (110) display one feature of singularity expansion

that is not found in the transmission-line analysis, namely, the appearance

of degeneracy. By degeneracy is meant that several distinct natural modes

all correspond to the same natural frequency. Each natural mode function

of the surface current density on the sphere depends on the two integers

£ and m, whereas each natural frequency depends on X but not on m. The

consequence is that each natural frequency is (2P +l)-fold degenerate.

On the other hand, it is also true that to each natural mode function

there correspond several natural frequencies. Each mode function is

multiplied into i/lC or 1/;', which contains more than one natural fre-

quency pole.

l In principle, it is possible to perform a partial-fraction decompo-

sition of 1/4k and i/' in terms of their poles, and hence obtain the

explicit singularity expansions for J and J from (109) and (110).

However, a general analytical formula for the pole location does not
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exist. The poles must be located by numerical computation, as is done

* in [29]. Fig. 14 shows a plot of some of the natural-frequency poles of

a conducting sphere, using the results of [29]. One gets the idea that

these poles actually blanket the entire left half-plane, unlike in the

case of the finite transmission line. Note also the symmetry of the pole
distribution with respect to the real axis.

zi
Im ($a/a)
2

X 0 X 0 X

0 X 0 X 0 X I

0
"K : 1, oK * ' , R.Cja/a)N4 -- -R -tj

0 K 0 X 0 K

K -

Fig. 14. Natural-frequency poles of a perfectly conducting sphere of

radius a. A cross (x) denotes a TM mode, while a heavy dot

(*) denotes a TE mode.

The induced surface current density on a conducting spherical

scatterer is therefore a meromorphic function of the complex frequency

s. It has been shown that this conclusion is actually true for all
finite-sized conducting scatterers [30]. This result can perhaps be
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* understood by observing that a finite-sized scatterer is topologically

equivalent to a sphere. If a sphere is gradually deformed into the
shape of another scatterer, its natural frequencies are expected to,
change continuously and the corresponding poles are shifted around over

the s-plane. It is observed that when a sphere is elongated to form a

prolate spheroid, its line of poles closest to the imaginary axis moves

even closer toward the imaginary axis, while the other poles move pro-

gressively farther away from it [31]. Thus, a very slender prolate

spheroid must exhibit a singularity pattern consisting of an infinite

linear array of poles close to the imaginary axis, which reminds one of

the pole pattern of a finite transmission line, and an infinite cluster

of poles far away in the left half-plane.

F I 1.4.2.4 Expansion Parameters for Simple Natural-Frequency Poles

The exact solutions of simple electromagnetic problems are extremely

valuable in providing insight into the intricate workings of singularity
expansion. In practice, however, exact solutions are notoriously hard

to come by. More often than not, one has to make do with approximate
solutions. one can try to expand the frequency-domain response of a
physical system in terms of only a partial set of the natural-frequency

singularities. This subset is to be so chosen that the truncated

singularity expansion still offers a good approximation to the exactI
expansion under the circumstances of interest. For this endeavor it
is desirable to have at one's disposal a general prescription for

calculating directly the singularity expansion parameters.

Practical physical mystems all have finite geometrical dimensions.

The exact solutions worked out above lead one to believe that the

natural-frequency singularities of finite bodies consist only of simple
poles in the finite s-plane. A simple pole is characterized completely

by its location and residue. These two quantities can be calculated from

the equations de3cribing the frequency-domain response of the physical

system.

The frequency-domain response of a linear electromagnetic system

to an applied excitation can be described in the concise language of W
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abstract vector space. In this description the response and the excita-

tion are represented by vectors f(s) and g(s), respectively, with s

denoting the complex irequency. These vectors are related by a linear

operator, or matrix, L(s) characterizing the system

L(s)f(s) - g(s) (113)

For a lumped network circuit, L(s) is a multiplicative function. For a

transmission line, L(s) is a differential operator. In scattering

problems, L(s) usually appears as an integral operator.

In general, L(s) has a set of eigenvectors v with correspondinga
eigenvalues a . They are determined from the nontrivial solutions of

the homogeneous equation

L(s )v - 0 (114)
aa

The eigenvalues s are the natural frequencies of the system and the

eigenvectors v represent the natural modes. As L(s) is in general

not Hermitian, the eigenvalues a are in general complex. The real

part of s describes the decay of the natural mode due to radiationa

or ohmic losses.

One next introduces the transpose LT of L obtained by interchanging

the two matrix indices of L

(LT)mn (L) (115)

LT has its own set of eigenvalues and eigenvectors. Its eigenvalues turn

out to be identical to those of L. They likewise consist of the set a.

The elgenvector corresponding to the eigenvalue s will be denoted by

B4 ,5so that

L T(s )i = 0 (116)

, a
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as compared to (114). The eigenvector p' lies in a vector space dual

to that of v . A scalar product between two vectors p and X belonging

to two mutually-dual vector spaces can be defined as

0.0 P(x)X(x)dx (117)

where the. integration extends over the entire domain of definition of

the eigenvectors, and x symbolically represents a general point of the

domain.

Suppose the eigenvalue spectrum of L is discrete. Then the response

f(s) has a simple pole at every natural frequency sa. Furthermore,

suppose 5a is not degenerate, so that it corresponds to one and only

one natural mode va Then, when the frequency s is very close to sa,

the response f(s) is predominantly in the resonant mode v . One can

therefore put

f(s) -C (s)V for s = a a

where Ca is a function of a. To evaluate C one substitutes (118) into

(113), and takes the scalar product of the resulting expression with

the dual eigenvector pa . The outcome is

Ca < , g(s)>

K1Ja ,L(s)v a>

For s s, one can make the following approximation

L(o) - L(s ) + (s-s )L'(sa) (120)
a ~a a

where the prime on L denotes differentiation with respect to s, Substi-

A tuting (120) into (119) and making use of (114), one obtains

c <P , g(S )>
a (121)

a (s - sa) < L'(s )V >
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where g(s) has been replaced by its value g(a ) at the pole. Eqs.(118)

and (121) show that in the immediate neighborhood of the simple natural-

frequency pole s- , the response f(s) has the form

f(s) - 6-8 (122)

where n 1 is a coupling coefficient defined by

<V , g(s )>(A a (123)

If, on the other hand, the natural frequency sa is degenerate, the

above calculation must be modified. Suppose sQ corresponds to n natural I
modes vii, v2 . . .•2. Then, by definition

L(s )v - 0, i-1,2,. . .n (124)

Similarly, the transpose operator LT of L has an n-fold degenerate I
"natural frequency sa with corresponding natural modes U1' '2' .. .Val so
that

L T (sa ) 1 O, a 0 1- 1,2,. .. n (125)

When the frequency s is very close to a,, the system response f(s) will

be predominantly distributed among the n degenerate resonant modes.

One can put

f(s) i-l Ci(s)vi, for s a a (126)

where each C is a function of a. Substituting (126) into (113) and

taking scalar products successively with gl U2 1 . " " n' one obtains the

following set of n linear equations

n
.cj <i , L(s)vj> - < , g(s) > i-1,2, ... .n (127)

J-1
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The solution of (127) becomes particularly simple if one chooses in

advance the degenerate natural modes V and vj in such a way that the

operator L'(s) is diagonal, that is,

<liiL'(s,)vj> < <pi L'(s vi> i (128)

Then, by (120), (124) and (128) one has

(-)L(s)vi> (s-a <Iii L'(s)vi>dij (129)

The solution of (127) becomes

01 , g(s">
C W(s - s) < Pi ) L'(s )v (30

where g(s) has been replaced by g(s ).

Therefore, when a is close to the n-fold degenerate natural frequency

a , the response f(s) has the form

f(s) (131)

where the coupling coefficients ni are

<P 1 g (s a>
<Ii - (132)

, L' (sQ)v>1

and the degenerate natural modes have been chosen to make the operator

L'(S ) diagonal.

Examples of the application of the formulas for simple-pole singularity

expansion parameters can be found in [32,33].
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1.4.2.5 Numerical Approach

The frequency-domain response of an electromagnetic system to an

applied excitation can be described by a linear equation of the general

form (113). The response is determined by constructing the inverse L-1

of L, so that the solution of (113) Is

f(s) L -1(s)g(s) (133)

It is clear that f(s) has singularities at those values s of a that are
eigenvalues of the operator L [see (114)]. When the inverse operator L-1

is expressed in terms of the eigenvalues and the eigenvectors of L, (133)

becomes a singularity expansion of f(s).

In most practical problems, it will not be possible to determine the

inverse operator L analytically. Approximate numerical techniques will
have to be employed. In general, in a numerical approach, f(s) and g(s) 4
in (113) are approximated by finite-dimensional vectors. One such approach
is the so-called method of moments [34] in which a set of expansion basis

functions {vn} is introduced. The unknown function f(r,s) is then approxi-

mated by

M
f(r,s) I fn(s)vn(+) (134)

nln

Substituting (134) in (113) one obtains

M
Sfn (s)L(•,s)v (') = g(r,s) (135)

n=l

Next, a set of testing functions {um} is defined and the scalar product of

(135) with each um is taken according to (117). Then

M

fnh(s) <u, u L(s)vn> > K <u, g(s)>, m-l,2,. .. N (136)

Under this scheme, L becomes a finite-dimensional square matrix whose

elements are functions of s. Its inverse L-1 can be constructed by
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standard methods of matrix inversion. The natural frequencies s are

soiutions of the equation .......

det <um, L(s)vn>- 0 (137)

and can be calculated numerically by iteration. The corresponding

natural modes v and their duals p' are then determined by (114) and

(116). Knowing both the natural frequencies and the natural modes,

one can calculate the coupling coefficients from (123) and obtain

thereby the singularity expansion of f(s).

Examples of numerical approaches to SEM can be found in [31,35].
For a comprehensive literature survey on SEM, the reader may consult [26].

1.4.3 HIGH FREQUENCY, EARLY-TIME REGION

At high frequencies, the electromagnetic fields away from source

regions (whether actual, as on an antenna, or induced, as on a passive

scatterer) can be approximated by equations that are simpler than the

Maxwell vector field equations. The simplification arises from the fact

that in the far zone of source distributions, the evanescent storage

field can be neglected. The simplified equations are based on the

assumption that ka >> 1, where k - 2n/X (with X representing the wave-

length) is the wavenumber in the medium and a is a scale length describing

characteristic observation distances, obstacle dimensions or medium

inhomogeneities. The precise nature of a depends on the problem under

consideration, and it is therefore convenient in the mathematical

treatment to regard k by itself as the large parameter, keeping in

mind that normalization in the combined form ka is intended eventually.

This section will treat the high-frequency approximation methods based

on the assumption that ka >> 1.

1.4.3.1 Ray Method

The simplified equations resulting from ka >> 1 are found to

characterize the high-frequency field in terms of local propagation
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phenomena involving propagation paths called rays. Thus, the field from

an initial reference surface A to an observation point P can be tracked

along a ray that passes through P and originates at point P' on A. The

field at P is affected only by the initial field values in the vicinity

of P' and by the medium properties in the vicinity of the ray. It is
possible that several rays pass through P, either because of the nature

of the field distribution on A or because the presence of obstacles or

scatterers gives rise to other local fields (Fig. 15). In that event,

A'd (initial surface for edge

d ddiffracted rays)

MA (initial surface for
s surface rays)

dl I
5 A'

Fig. 15. Scattering by a composite obstacle with surface contour A'.

Various ray species have been identified by numbers explained

in the text. The following are initial surfaces: A for incident

rays, A' for reflected rays, A' for tip diffracted rays, aid A'
d

for surface (creeping) rays.
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the total field at P is 6ynthesized by the sum of the fields reaching P
along the various rays. The localization arises from the fact that

high-frequency source distributions generate a spectrum of plane waves
that interfere constructively along certain preferred directions, the
rays, and thereby give rise to a strong field; along other directions
that deviate from the rays, these waves interfere destructively and
cause weak effects that can be ignored [36 -38].

Along the ray trajectories, the constructively inLerfering plane
waves can be characterized as a local plane wave. The local plane wave
concept is central to the tracking of high-frequency fields. To under-

stand what is involved, we consider the distinction between true and
local plane waves. A true plane wave in a homogeneous medium has a
plane phase front (equiphase surface) A(•) - A (constant) and an
amplitude u(r) - u0 (constant), where r is the position vector. The

field propagates in the direction perpendicular to the phase front.
These perpendicular trajectories, along which the phase front advances,
point in the direction of VA(r)IA-A and are the rays. For an observa-

tion point P along a ray, the field differs from that at P' on the initial
surface A only by the phase change exp(-Jkd), where d is the distance

between P' and P (Fig. 16). A local plane wave describes a field

A

Fig. 16. True plane wave.
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characterized by non-planar phase fronts. The simplest example is that

of a spherical wave. Ignoring the vectorial properties, the scalar field

in the far zcne is given by

-jkr
r kr (138)

where C is a constant. If r- r denotes the initial wave front, then the

rays point in the direction Vr r- ro r e riS a radial unit vector.

The field at P along the ray originating at P' differs from the field

at P' not only by the phase change exp(-jkd) as in a true plane wave,

but also by the amplitude change ro/(r- ro). This amplitude change

identifies the field along the ray as a local plane wave field which is

synthesized by constructive interference of a bundle or packet of true

plane waves whose propagation directions are close to Ir(Fig. 17a)

Since energy in the high-frequency field, as carried by the local

plane waves, flows along the direction of the rays, energy is conserved
in a tube of rays. Thus, the energy density is inversely proportional

to the ray tube cross section dA. The field amplitude is proportional

to the square root of the energy density and therefore varies inversely

with v~dA. For the spherical wavefront in Fig. 17a, the ray tube is
2

conical and the cross section varies as r ; the amplitude therefore

decreases as 1/r as in (138). When the wavefront has a more general

shape as in Fig. 17b, the ray tube cross section dA may have two

principal radii of curvature R and R2 each centered on a surface

called a caustic.

The preceding considerations lead to the following formulation

of the local plane wave field carried along a ray [37]

(dAA 1/2e-jkd dA R1R2

__) A ) \ A-- A -- 2
U~r) ý ue 0 19dA (R1 + d)(R 2 +d)

where uA is the initial field at P' on A (Fig. 17b), dAA is the initial

ray tube cross section, and d is the distance from P' to P. The expression
for dAA/dA in terms of R, and Ris inferred from Figs. 17b,c.

~J S226 
•

Z'€



-'P

may tube-&\\

- PI \dAA ~ frant

N I,'IE.iI \ € I /

I /phase
point source pla we/ front

bundle . -

(a) spherical phase front (b) arbitrary phase front

d\d/ central

d __ dd

%1 C dAA 2

(c) Ray tube cross sections dAA and dA for arbitrary phase front. The b
principal coordinate directions are shown dashed. The principal

radii of curvature R1 and R2 are centered at the virtual foci 01
"and 02, respectively, from which emanate the rays passing through

the points (P1 ,P{) and (P2 ,PI). These rays are tangent to caustic

surfaces C1 and C2 whereon lie the virtual foci descriptive of ray

tubes cut out elsewhere on the phase front. Tecurves ad2

on the caustic surfaces correspond to rays passing through extensions

of the principal coordinate curves PIP' and P2P'.
1 1 22

Fig. 17. Local plane waves, rays and ray4tubes.
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The local plane wave field along a ray can be calculated by (139)

from a knowledge of the initial field value and the ray geometry. The

initial field value must be determined independently by solution of

canonical problems. In the canonical problem, the incident local plane

wave field may be replaced by a true plane wave field, and the obstacle

configuration by a simpler geometry that nevertheless retains the correct

local scattering properties. For the incident field in Fig. 15 the

initial values on A can be calculated from the known source distribution.

The reflected field is caused by the incident rays (ray 2 in Fig. 15)

reflected au the obstacle surface. The reflection laws for local plane

waves on a curved surface are the same as for true plane waves on an

infinite plane surface tangent to the curved surface at the point of

impact of the incident ray (canonical problem). Thus, the incident and

reflection angles ei are equal. The initial value of the reflected field

at P5 is given by the incident field at P5 multiplied by the plane wave

reflection coefficient P('i) descriptive of the reflecting properties

of the boundary surface. The amplitude variation along ray 5, as

determined by the ray tube cross section dAA5, involves the surface

curvature at P5 ' the curvature parameters for the incident wavefront,

and the angle coordinates X and Xi specifying the directions of the

reflected and incident rays. Therefore, the reflected contribution to

the field at P is given by (see ray 5 in Fig. 15)

-jkd5  kd2
U5 u2 r(Oi)M(5,2)e , u A2 k d2  (140)

where uA2 is the initial field for ray 2 on surface A. To simplify the

notation here and subsequently, we have written

(dA /dA) E M(X11X2) = M(5,2) (141)
A5 (5X2)

The incident local plane wave field along ray 3 striking the conical

tip of the obstacle in Fig. 15 excites a spherical wave front and there-

fore a family of rays centered at the tip. The canonical problem for the

2 ii



tip diffracted field is that of a plane wave incident on an infinite

conical obstacle. That solution provides the diffraction coefficient

DV(x,xi), by which the incident ray field is modified upon emerging

from the conical tip. * Here, X and Xi denote, respectively, the angle

coordinates specifying the directions of the diffracted and incident

rays. Thus, the contribution at P due to the local plane wave along
ray 6 is

-Jkd 6  -jkd36 V(6,3) (142) u

kd6 u U3  UA3 kd3 (142)

where UA3 is the initial field for ray 3 on surface A. To simplify the

notation here and subsequently, we have written

Dv(6,3) Dv(x 6 ,x 3) (143)

Although the canonical problem yields the diffracted field on the initial

surface AA in Fig. 15, the result can be expressed more conveniently as

in (142) where relevant length parameters are measured from the tip.

When an incident ray grazes a smooth segment of a scatterer (ray 4

in Fig. 15), it excites a diffracted surface ray (also called creeping
ray) that travels along a geodesic on the shadowed surface (ray 7) and

sheds energy continuously (ray 8). Tbh launching amplitude L(X, Xi) of

a surface ray field and its amplitude variation M s(d ) along its geodesic

path d7 are determined from the canonical problem of plane wave diffraction

by a smooth obstacle and have been fo,,nd for special configurations. When

a surface ray strikes the conical tip, it aljo gives rise to a spherical

diffracted wave that adds a field uý to the contribution at P arriving

along ray 6. The canonical problem of surface ray field diffraction by

*While the problem of plane wave diffraction by a conical obstacle

can be solved, no convenient form for the diffraction coefficient has as
yet been developed.
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the tip of a conical obstacle is still under study; it furnishes the

diffraction coefficient DJX,Xi). The field ug is then given by

-Jkd• -J kd 6 -Jkd 4u' u4 L(7,4)M (d 7 )e 7D4,7) eie ,(u 4  4

6 6 - u4  UA4  kd (144)

where d7 is the surface ray path (geodesic) between the point of tangency
of the incident ray 4 and the tip.

Tip diffraction due to incident ray 3 also gives rise to a surface
ray (ray 9) that emerges at P to contribute to the field at P along

ray 10. The initial surface A' for shed surface rays is displaced from

the obstacle surface but in the formulation of the diffracted field, it

is again convenient to measure distances from the obstacle surface. Thus

Ul0. u3Ds(9,3)M (d9)e- 9L(10,9) e-(145)10 -1 kdo 1045

where u3 is given in (142), d9 denotes the geodesic length along ray 9

from the tip to the shedding point P1 0, and L(10,9) gives the shedding
amplitude which can be normalized, so that it equals in form the launching

amplitude. Although the surface rays 7 and 9 in Fig. 15 appear to coin-

cide, they describe different trajectories since the points of tangency

of ray 4 and departure of ray 10 are not identical.

The total ray-optical field at point P in Fig. 15 is now given by

uAOu1 + u + u + U,+ u(161 5 6 6 10 (146)

where 

-jkd11u UAl kdI

denotes the field along the direct ray from the suurce, and the remaining
contributions, given by (140) - (145), are due to the presence of the obstacle.
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The result in (146) contains only the dominant contribution from

each of the ray fields. Generally, each ray field has, in addition to

this leading term, a series of higher-order terms that decay inversely

with k. The field is therefore given by an asymptotic expansion in

Id .inverse powers of. k. Validity of the leading term alone implies that

the. higher-order terms, in particular the second term, are small in

comparison with the first-. Some estimates of the accuracy of the

asyptoicaly xpadedfield can be made on general grounds (see.

Sec 1..3..1)but for scattering problems encountered in practice,

it s sualytoo difficult to apply them. Therefore, the range of

parmetrsforwhich formulas as in (146) are useful and valid, has

bee asertine bycomparison with canonical analytical solutions or

with numerical solutions that can be generated independently. These

considerations are illustrated in Sec. 2.1.2.2. For example, in

I transition regions near shadow boundaries, caustics, and foci where

relevant ray field amplitudes tend to infinity, the use of uniform

asymptotic methods provides a valid description.

By the very construction of the field in (146), it is evident that

the ray method decomposes a complicated composite scattering problem into

a sequence of simpler (canonical) problems via the following steps:

(a) Determination of the incident field over an initial surface A.

(b Determination of the reflected and diffracted ray fields that

contribute at an observation point P.

(c Identification of canonical problems that treat separately

each of the ray reflection and diffraction problems. The

solutions of these problems furnish the initial amplitudes

along various species of reflected and diffracted rays.

(d ) Synthesis of composite scattering problem by interaction

(along rays) between canonical constituents.

The various ray species arising in the diiffraction problem of

Fig. 15 have been associated with a perfectly conducting obstacle.

231

T,.



When the obstacle has other surface features (for example, edges) or

when it is penetrable (lossless dielectric), additional diffraction

mechanisms and corresponding ray fields may arise [36-38].

1.4.3.2 Equations for the Ray-Optical Field. and Their Solution [36-38]

1.4.3.2.1 Derivation of the Equations

The scalar field u in an inhomogeneous medium with refractive index

n satisfies the scalar wave equation

[2+k 2(r)u(•r - 0, k()- kon(r) (148)

where k is the wavenumber in. vacuum and k is the wavenumber in the

medium. By assuming that u at high frequencies (large k ) behaves like
0

a local plane wave field, the wave equation can be simplified. In order

to allow for corrections to the local plane wave assumption, we write u

in the form of an asymptotic expansion (see Sec. 1.4.3.3.1) in inverse

powers of ko, wherein the local plane wave field represents the duminant

(m- 0) term

U() u 0(r)exp[-Jk oi(r)] + exp[-Jko(ir) ] i (- ) (149)

The amplitude functions urm, m-0,1,2,.. ., and the phase function 4,

are assumed to be independent of k . Substitution of (149) into (148)0

gives

S() Qm((Jk) 2-rn -0 0 (150)
m..O

Since this equation must be satisfied for arbitrary (though.large) ko,
one equates to zero the coefficients m to obtain from Qo 0

+2 2+[Vr(r)] - n CW) (eikonal equation) (151)

A unit vector

VO (r) E4ýýL (152)•tlw0(•)l n(+r)
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compatible with (151) then points in the direction of the normal to the

equiphase surfaces ý() - constant, and may therefore be identified as

the ray vector tangent to the ray trajectories. Since

- •(153)

if r r(&) denotes points on the ray trajectory and • measures distance

along a ray (Fig. 18), one may write (152) as

d [n(•) •t J"Vn(•) (154)

to obtain the ray equation. The notation n(C) implies that the observa-

tion points r are constrained to lie along a ray.

zif dd

r a of curvaur

Fig. 18. Ray parameters.
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The next term in (150) gives QI 0, that is,

[V •(M) + 2Vi('). V]u o() M 0 (transport equation) (155)

which is equivalent to

V. - u' (In (r*) 0 (156)

with the quantity inside the square brackets being proportional to the

energy flux density in the local plane wave field flowing along the rays.

Eq.(156) therefore represents an energy flux conservation theorem, which

has already been applied in Sec. 1.4.3.1 on physical grounds (within a

tube of rays) for the determination of uo along a ray.

From Qm(r) - 0, m > 2, in (150) one obtains the transport equations

for the higher-order amplitude coefficients that correct the local plane

wave field. These equations are

2+ 4 r 2 4
[V Wp() + 2V*(•) • Vlu () - - VUm- 2 (r), m L 2 (157)

These recursive equations are more complicated than that for the dominant

term u0, and it is usually impractical to effect a solution for the higher-

order coefficients u m, m > 2. However, these equations are useful for

providing estimates on the range of validity of the local plane wave field

assumption, which requires that lUl1k 0I << Uo I (see Sec. 1.4.3.3.1).

From this requirement, one may deduce the restriction

IVn(r)I 1 << 1 (158)

n(r) k0 n(r)

which states that the relative change in the refractive index over an
interval of the local wavelength X in the medium must be small; that is
to say, the medium must be "slowly varying" on the local wavelength scale.
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1.4.3.2.2 Ray TraJectories

The ray trajectories are obtained by solving (154) subject to

prescribed initial conditions. In a homogeneous medium with n(&) -

constant, (154) reduces to d•/dt - constant, or r(Q) - I + B), where

A and B are constant vectors. Therefore, the rays are straight lines.

In an inhomogeneous medium, the rays are generally smoothly curved.

It may be shown that the curvature K of the ray is given by

K(t) d dn( (159)K()-n(t) d9,

Sii
where t is the coordinate perpendicular to & and hence lies on a wave-

front. Therefore, the ray is curved whenever the refractive index n

varies along a wavefront, and the ray bends toward the direction of

increasing n. This behavior is in accord with the application of

Snell's law of refraction when the continuously varying medium is

approximated by a sequence of locally homogeneous layers. In a plane

stratified medium where the refractive index n(•) - n(z) varies along

the rectilinear coordinate z only, the rays may be shown to be plane|

curves. A typical ray y- y(z) lying in the x- 0 plane (Fig. 18) has

the functional form

y - Yo a n 2 1/2 (160)

i [n2(•) W I2]

where (y 0 ,zo) is the initial point on the ray, and n E n(z)sin O(z) -

constant, with 0 defined in Fig. 18,is the ray parameter. By choosing

different values of q according to different initial conditions, one

may generate the entire ray family. The condition n = constant is

a statement of Snell's refraction law when applied to a continuously

varying medium.

1.4.3.2.3 Phase and Amplitude

The local plane wave phase ' is determined from (152) by integra-

tion along a ray
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- (r 0 n( )dC (161)

r 0

'where r and r are the initial and observation point along the same ray,

and p(+r) is the initial phase.
In a homogeneous medium with constant n(c') -no, where the rays(

are straight lines, I
-(r a oI - n0d (162),d

as already noted in Sec. 1.4.3.1 from physical considerations pertaining
to the local plane wave field. In a plane stratified inhomogeneous

medium with n(-) - n(z), (161) yields for the ray in (160)

zI
+ 2 n2 1/2

) - n(y-y [n2 dC (163)
zo

The local plane wave amplitude u0 is determined by (155) or (156).

By applying Gauss' divergence theorem to a volume contained within a

tube of rays, (156) may be reduced to

+ n(ro)dA(rO)
uu((r) I - °) I 0)dA(() 12 (164)

n('r)dA('r)

where dA(rO) and dA(r) are, respectively, the ray tube cross sections
containing the initial point and the observation point along the same

ray. For a spherical wavefront in a homogeneous medium, (164) reduces

to the result in Sec. 1.4.3.1.

1.4.3.2.4 Ray-Optical Field

The ray-optical (local plane wave) field u exp(-JkP) in an inhomo-
geneous medium can be constructed by combining the results from (161)

and (164) to give
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U( + [n (+ro0dA 6rO') ru ~(r1 u/(r2 exp Jk n(F)d ] (165)

0ra(+)dA('r) 1 f
r 0

The validity of (165) is confined to slowly varying media, which are

given by the condition (158). It is also restricted by the condition

dA(&) 0 0 (166)

i.e., to the exterior of focusing regions where ray crossings occur.

Ignoring (166) would lead to the incorrect conclusion of infinite fields

at caustics and foci. To accommodate focusing regions where the ray-

optical field is invalid, it is necessary to employ transition functions

that are derived by a more sophisticated set of equations than those in

(151) and (155).

1.4.3.2.5 Evanescent Fields [39,40]

Evanescent fields decay exponentially along certain directions,

even in a lossless medium, and are therefore usually ignored in the

presence of non-evanescent fields. However, situations arise where
evanescent fields, though weak, are the only fields to be observed, and

their propagation and diffraction characteristics then become important.

Contigurations where the total field is evanescent include the interior

of cutoff waveguides, the exterior of dielectric slabs or rods guiding

trapped waves, the transmitting medium when an incident field is totally

reflected at an interface, the "dark" side of caustics confining focused

fields, and the off-axis regions of strongly focused beams.

Like non-evanescent fields, high-frequency evanescent fields can

be tracked by invoking the notion of local evanescent plane waves.

Such waves are defined by the first term in (149) except that the

phase * is now complex just like the amplitude u0 . Thus, one writes

for the local evanescent plane wave field

u(r),u (r)exp[-Jko*(r)] (167)

0 0.
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++

where R, I, w and v are real functions of r. The phase fronts R(r)
constant advance along the direction of the unit vectors 4

I• R() aIVRI (169)

S' Li- -

'4I

wivle the field decays along the direction of the unit vectorI

1R t - aI , u ( IVe- (170)

a(r)

On surfaces I(r) -constant, the field has constant exponential

amplitude.

When (167) and (168) are substituted into the wave equation (148),

the reduced equations (151) and (155) remain valid. On separating
into real and imaginary parts, one obtains from (151) the dispersion

S~equation
S() - a2(r) = n (171)

and also the condition VR •VI = 0, indicating that the surfaces of

constant phase and constant exponential amplitude are orthogonal.

Thus, the coordinates & and t form an orthogonal grid, with the
h-trajectories (on which I - constant) referred to as "phase paths"

and the t-trajectories (on which R - constant) referred to as "attenua-

tion paths" (Fig. 19). The phase paths should not be confused with

iorals aindeth iomagnry parts oenerobains furomd (151) tnahogendserusio

! medium. Whenever a varies along an attenuation path (i.e., on a
Sphase front) so that dr/dt ) 0, then in view of (171) ý will likewise

vary along a phase front, even whe n constant. Since orhoo/V,
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attenuation path . power flow trajectory-0 01/ko)

/•t•• 
•-const.

(phoee path)

(equiphate surface)

Fig. 19. Surfaces of constant phase and amplitude. I
where w is the wave frequency and V the phase propagation speed, different

portions of the phase front propagate at different cpeeds. Hence, an

originally plane phase front will become non-planar, and the phase paths

orthogonal thereto become curved. Moreover, as indicated in Fig. 19,

the power flow in the local evanescent plane wave field does not exactly

follow the phase paths but deviates from them by an angle of 0(1/k ).

From (169) and (170) the equations for the phase paths and attenua- I
tion paths are

d ( 'r)t{ 
--+r[ ( +r) l] V a ( r) (172)

i

Each of these equations, which must be solved simultaneously subject to

(171), has the form of the ray equaiion (1.54) for the geometric-optical

field. It also follows from (169) and (170) and the fact that I - constant

on a phase path while R = constant on an attenuation path that

dt (ro

a( r) a= 0(• ) 

(173)

()- 0) d (174)
dI(I3)
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In (173) r and r are the initial point and observation point, respectively,

along the same phase path, while dt(r ) and dt(r) are the spacings between
0

corresponding neighboring phase paths (Fig. 20). Similarly, in (174) 00

attenuation path s

phase paths

phas front

Fig. 20. Tracking of a and 0 along phase and attenuation paths.

and r1 are the initial and observation points, respectively, along the
same attenuation path, while d r( 0) and d( are the spacings between1

corresponding neighboring atteruation paths (Fig. 20). Thus, as for

the geometric-optical field, the (ý,t) trajectory grid for the evanescent

field provides the information required for the tracking of the phase

gradient 0 and attenuation gradient a.

When (155) is separated into real and imabinary parts, there

result two coupled transport equations for w and v in (168)

2 +4d(- dv (r)
2R(,) + 20(r) d - 2a(r) d 0 (175)

dc dw(E)

V 1(r)+2 -r)AIL- 2 a (-) 4KL- 0 (176)
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For weakly evanescent fields with small a, the above equations can

be solved by perturbation methods. Since 08o) n (see (171)), where

the superscript denotes the order of the perturbation, one observes

from (154) and the first equation in (172) that the unperturbed phase

paths coincide with the geometric-optical rays for non-evanescent

fields. One then calculates a(o) along a phase path from (173), and

thereafter O(i) = (n2 + [a(o)12)1/2. Using a(1), the phase paths can

now be corrected from (172), and R() can be calculated by integrating
(1) . d R(1)/d " E along a phase path. The exponential attenuation func-

tion I along a phase path remains constant at its initial value. The

transport equations in (175) and (176) can be solved in a similar

manner. It rhould be noted that due to the need for tracking two

functions a and 8 along mutually perpendicular trajectories, the

propagation characteristics of high-frequency evanescent fields are

less local than those of non-evanescent fields.

1.4.3.3 Asymptotic Methods [41]

1.4.3.3.1 Asymptotic Expansions

Approximate evaluations of fields in the high-frequency regimeI

commonly generate expansions in inverse powers of the wavenumber k,

based on the assumption that k is large. An example is provided by

the field representation in (149), wherein the leading term describes

the local plane wave field. Expansions of this type, called "asymptotic

expansions," generally do not converge; i.e., for a fixed value of the

parameters (k and r in (149)). the series diverges because the expansion

coefficients (um(•) in (149)) grow as m + -. Nevertheless, these series,

although divergent in the strict mathematital sense, are useful because

they can be employed to approximate the field provided that only a finite
number of terms is included. Loosely speaking, a calculation involving
the first M terms in the expansion is legitimate provided that the (M+l)th

term is smaller in magnitude than the Mth term. Fur a given M, this can

always be accomplished by choosing the asymptotic-expansion parameter

(1/k in (149)) large enough. A good indication of the quality of the
0
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approximation can be obtained from the recognition that the error between

the asymptotic representation involving M terms and the true value of

the field is roughly equal to the magnitude of the (M+ l)th term. Based

on these considerations one can deduce the necessary restrictions on

the parameters in a function represented by an asymptotic series. For

example, validation of the local plane wave (ray-optical) field in (149),

as given by the first term, requires at the very least that 1u1/ko1 << juo0.

Improvement of the local plane wave field by inclusion of the m- 1 term

requires at the very least that Iu2/k.1 << lull, etc. In view of the
error criterion cited above, it is evidently dangerous to push an asymp-
totic expansion containing a few terms, and especially if only the leading

term is retained, near the limit where the first omitted term equals in

magnitude the last term retained.

The preceding considerations can be phrased mathematically.

Regarding k0 as the large parameter, a function F(r,ko) (for example,
the field in (149)) can be represented rigorously as follows

M

F(r -k F(Cr)kom + R(r,ko) (177)

where RM is a remainder term. Making k. large enough, one can reduce
Rm to as small a value as desired (a good estimate of P. is given by

+ -m-I
IFM+ l k ). Thus asymptotic series are not usually written in

the form (177); instead, letting k +~ 0, the summation is extended over
0

all values of m

+I
Frk0Fm('r)k 0 0(178)

and it is implied that for any m

F (+)
m+l + 0, as k + (179)
k F W~

om

+
However, for practical calculations involving fixed k and r, the series0

in (1.78) is to be understood in the sense of (177).
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1.4.3.3.2 Asymptotic Evaluation of Integrals

Field formulations exterior to actual or induced source distribu-

tions generally involve integrals that extend either over a surface or

volume in physical coordinate space, or over wavenumber space in a

spectral representation (see Sec. 1.4.3.4). Such integrals are typically

of the form

I(SI) f(+)e-J qT)d+ (180)

where T = (xr yT z ) denotes the integratiou variable in a three-

dimensional coordinate space, D is the domain of integration, f(G) and

q(T) are analytical functions of T (with isolated singularities), and 0

is a positive parameter (if Q is complex, one writes 0 = I~lexp(-j arg S.)

and combines arg Q with q). When Q is large, the exponential term is

rapidly oscillating for real q or rapidly decaying for negative imaginary

q. Assuming that f varies slowly by comparison with exp(-jQq), one

concludes that the major contribution to the integral arises from those

regions in the T-space where q is slowly varying when real, or where

(Im q) has a maximum when q is complex. These observations form the

basis for approximate methods for evaluating I, which may be foutnd in 142].

1.4.3.4 Alternative Formulations of Diffraction Problems

Diffraction problems of the type schematized in Fig. 15 can be

formulated in various ways. Let the obstacle be perfectly conducting.

The secondary field generated by the induced surface currents can be

represented either in terms of the direct radiation from the elementary

currents distributed over the obstacle surface A', or in terms of a super-

position of modal fields excited by these currents. One important

example of the latter procedure involves modal plane-wave fields and

results in the "plane-wave spectral representation." Both of these

are formulated below.

1.4.3.4.1 Induced Current Formulation

Referring to Fig. 15, the total vector electric field E may be
4.-i

decomposed into a specified incident part E which would exist in the
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absence of the obstacle, and a secondary part s due to the induced

obstacle surface current

+ is

The radiation from each current element J can be expressed in terms of

the free-space dyadic Green's function G(r,r'). Thus

4A ++"+÷
i(s f Ge(r ,r') • ý(_r')d•'l (182)

A

The surface currents must be such as to ensure vanishing of the tangen-

tial electric field on A', i.e.
+ A

Ix(6) 0, ron A' (183)

where tis the unit vector normal to A'. Thus, these currents aren

specified implicitly by the integral equation

Inxi( -T) rnr ) r J(r')dr' r on A' (184)

A'

1.4.3.4.2 Plane-Wave Spectral Formulation

The incident and secondary fields may be expressed by modal super-

position. In a basis involving plane-wave modes, one obtains

- f (&,n)exp [I-k(Ex + fy + /f -n7. )Idý dn (185)

e s5()-f 7 (ý,ri)exp [Jk(4x + fly + T, 4. )]dC dri' (186)

where z - 0 is a suitably chosen reference plane,, Here, ý,n and

A__ _2 are the normalized wave numbers of the modal plane waves 1
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along the x,y and z directions, respectively. The modal amplitudes +e

for the known incident field are obtained by Fourier inversion of (185).
-+s

The modal amplitudes e for the secondary field are specified implicitly

by the boundary condition (183).

1.4.3.4.3 High-Frequeny Aproimations I
In the illuminated region A' on a perfectly conducting obstacle

away from surface singularities (such as edges, tips, or corners) and

from strongly curved regions (where the radius of curvature is not large

compared to wavelength), one may approximate the induced surface currents

by their "physical optics" value. The physical optics currents Vare
based on the local behavior of high-frequency fields described in Sec.

L ~1.4.3.1 and are taken at any point P on A' to have the samie value as on

an infinite perfectly conducting plane tangent to A' at P. Thus

SP (-r) =2 x H (r), r onA' (187)

where is the incident vector magnetic field. In the shadow region

one assumes 1p=O0. When Vis substituted into (182), one obtains the

physical optics approximation of the secondary field. This approximate.

field, when evaluated by the asymptotic method of Sec. 1.4.3.3.2. is

found to give correctly the geometric-optical reflected field and the

diffracted field near the shadow boundaries. It does not provide, however,

good results for the diffracted field away from the shadow boundaries.

Even on a smoothly curved convex~ object with large radius of

curvature, the physical optics currents become invalid near the shadow

boundaries. One may therefore attempt to add to Va correction
named "fringe current" by lifimtsev [43], so that the sum equals the

exact current value. Because of the val.Ldity of the physical optics

currents well inside the illuminated region, and away from edges or

corners, the fringe currents are confined to the vicinity of those

portions on A' that lie near shadow boundaries or surface singularities.
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The method of fringe currents has been exploited to correct the

physical optics fields for scatterers with edges. However, as employed

by Ufimtsev, the method has limitations because it does not yield the

currents J per se, but only the far fields produced by them. An alter-

native procedure approximated the fringe currents by equivalent edge

currents re flowing along an edge (Fig. 21), their value being selected

so that they give the correct GTD (Geometrical Theory of Diffraction)

field in its regions of validity, This approximation causes certain

difficulties which have been discýVssed in a paper by Knott and Senior [441.

edge4- .

Fig. 21. Various current distributions on the illuminated

side of a conducting obstacle bounded by an edge.

1.4.3.5 The GTD Vector Fields [451

In this and subsequent sections the emphasis will be placed on the

electromagnetic vector problem at the high-frequency, early-time limit

whereas the previous sections, namely, Secs. 1.4.3.1 through 1.4.3.3,

treat exclusively the scalar fields.

Let the total distance along the ray path from the reference point

to the field point P be C; the reference point 0 is commonly chosen to

be the point at which the GTD field is excited. In free space the GTD

electric field can be given the general form
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t(,s) - (0,s) .+•(s)f (W)e's5 c (188)

in which

ý(O,s) forcing function (the incident field, source or reference

field) at 0,

f (C) spreading factor expressing the power conservation in a

tube or strip of rays,

es/c - delay factor between 0 and P along the ray path,

*(s) - dyadic coefficient, which is the remaining part of the

radiating system function and, in the case of scattering,

depends on the local geometry of the body at the point of

reflection or diffraction and perhaps the local behavior

of the incident field.

The corresponding expression for the magnetic field, except at a

convex surface, is

T(, ( s)/zo (189)

where, as before, ý is a unit vector in the direction of the ray path.

In the following "asymptotically equal to" - is replaced by "equal to" -

with the understanding that the expressions are high-frequency approxima-

tions.

Eq.(188) can be inverse Laplace transformed to give the following

time-dependent field

E(•,t) - fs(0)3(•,t) (1.90)

where

- 1 0 + S(t - VC)
,.3( N',t) 2 F C(s)e ds(91)

o.joa

or employing convolution,

247



(•t)- (o,t') .C(t - t')dt', t - ý/c > to0
t

0

-0, t- /c < t (192)0

where to is the time at 0 when the forcing function is turned on. The

electric field i(U,t) as obtained from (190) is usually valid only for

early times, more precisely, when t is close to t + V/c.
0

If a caustic occurs on the ray path at Pi between 0 and P, the

expression for E(C,s) contains an additional factor of exp(jn/2), but

(188) is still valid within a wavelength or so of P1. The presence of

a caustic at P1 is more serious for the calculation of E+(,t), because

it leads to a noncausal result. We exclude this case from the present

treatment.

The GTD representations of the electric and magnetic fields can be

written as
irs + •r +rs d +

(rs) - +E (rs) + E(rS) + E (r,s) (193)

"(S) 1 (+,s) + f(r,s) + 0 (r,s) (194)

where the first two terms in the above expressions are the incident and

reflected component- of the geometrical-optics field, and the last term

is the diffracted field.

The surface current and charge densities induced on perfectly

conducting surfaces are of interest. At the point r on such a surface

( j+r, -1 X H(r,s) (195)

p(rs) e I E(+,s) (196)

where and p are related by the continuity equation (7). The geometrical-

optics current and charge densities are
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+i

p (r.s) 2cti(r,s) (198)

in the illuminated region, and zero in the shadow region. Deep in the

illuminated region, well away from shadow boundaries, edges and vertices,

the high-frequency surface current and charge densities may be adequately

approximated by I and Po.

In the case of propagation away from the radiating source or

structure we have for ý(t,s) as given by (188)

4. 4 ~
F(0,s) - E(0,s) (199)

C+(S) -•(200)

• RIR2
f() M (201)

V (ýRI •(R2 4-•

in which R1 ,R 2 are the principal radii of curvature of the wavefront at

0. For two-dimensional configurations we may let R2 + and obtain

f 1+ (202)

and in the case of plane waves, where R1 as well as R2 approaches •,
f s() - 1.

Fields of this type are of interest here, because the field inducing

a surface current or charge may have been initially reflected or diffracted

by, for example, a fin, wing or fuselage of an aircraft before reaching

the surface point in question.
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1.4.3.5.1 Reflection

The GTD field contains the incident and reflected fields of geoetrical

optics as its leading terms. Let a high-frequency wave be incident on i

smooth, perfectly conducting surface S as shown in Fig. 22.

Ir

Or

IS

Fig. 22, Reflection at a curved surface.

For the field E (C,s) reflected from the point Qr we have for (188)
wr

'E(O,s) E (QrS) (203)

C(s) -+R(dyadic reflection coefficient) (204)

atkd fs(M) has the same form as in the preceding case except that RR2
r r

are replaced by R1,R2, the principal radii of curvature of the reflected

wavefront at Qr' Here, • is the distance between Qr and the observation

point P, and

+- - t t (205)

"is clearly independent of t for a perfectly conducting surface. The unit

vector TL is perpendicular to the plane of incidence, and the unit vectors

and are parallel to the plane of incidence as shown in Fig. 22.SII I

Expressions for R1, R2 are given in the appendix of [46].
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The geometrical optics approximation can be improved by including

higher-order frequency-dependent terms obtained from the Luneberg-Kline 1
expansion. Luneberg-Kline expansions for fields reflected from cylinders,

spheres and other curved surfaces with simple geometries are given in [47].

These higher-order 'terms improve the high-frequency approximation if the

specular point Qr is well away from a shadow boundary. Although they do

provide some useful information in the early-time period, these higher-

order terms are, in general, not useful in extending the early-time

solutions to intermediate times.

1.4.3.5.2 Edge Diffraction

A UTD (Uniform Theory of Diffraction) solution for a high-frequency

electromagnetic wave incident on a curved edge (Fig. 23) has been giver

in [46].

T1•

0I

I diffraction (Id1T

edge-fixed
pplaneea of

in id nc pl n I I at,

Fig. 23. Diffraction at a curved edge.
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In the case of the field l(t,s) diffracted from the point Qe on the

edge of a curved wedge, we have for (188)

F(Os) - ii(Qes) (206)

4(s) "n4(ti, Ld Li) ro, Ld, r )

(dyadic diffraction coefficient
for cuived wedge) (207)

f_ _ (208)
Sf ( - +C

in which

- unit vector in the direction of incidence at Q

Id -unit vector in the direction of diffraction at Qe
iL distance parameter for the incident wavei

Lro - distance parameter for the wave reflected from the 0

surface of th, wedge (Fig. 23b)

Lrn . distance parameter for the wave reflected from the nw

surface of the wedge (Fig. 23b)

- distance between Q and P

PC = distance between Qe and the calistic on the diffracted ray

and is given by

1. n _ ..n .( t-) (209)Pc C p a sin 2 o

where p i is the radius of curvature of the incident wavefroa at Q takenSin the plane of I' and Te (the unit vector tangent to thd edge at Q e),

te is the associated unit normal vector to the edge directed away fromn
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the center of curvature, a > 0 is the radius of curvature at Qe' and

the angle between and Te as shown in Fig. 23. The dyadic diffraction

coefficient D is given by

D- X 1 i x s) - . D (1',IdX s) (210)

in which

M unit vector nerpendicular to the edge-fixed plane of incidence

= - unit vector perpendicular to the edge-fixed plane of diffraction

l•°-lix I,

=1 X represents the parameters L L and L collectively. The edge

fixed plane of incidence contains t and V, and the edge-fixed plane

of diffraction contains V and I

The soft and hard scalar diffraction coefficients D and Dh can bes! h

factored to yield

D h(I" ,s) d 1 (,)ft(XMS) (211)
S, 2n I m m

where niT is wedge angle (Fig. 23b). Expressions for ds'h (&i•d) and
m

ft(x:ms) are given elsewhere [46]. Outside the transition regions the

frequency dependence of the edge diffraction coefficient 6implifies to

ft(Xm's) (212)

If the incident field at Qe has a rapid spatial variation or

2i(QeS) - 0, a second term must be added to i(ý,s). This second term

can be put into the ray optical form of (188) with
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(O'S n (Qe ,s) (213)

__+____ ro rn
C(S) = CId Li L L

s sin o , '

(dyadic slope diffraction coefficient
for wedge) (214)

and fs(C) given by (208). Here, the partial derivative with respect

to n is taken in the direction normal to the edge-fixed plane of

incidence, whose angular position with respect to the illuminated

surface of the wedge is ý' (see Fig. 23).

If the edge diffraction problem is two-dimensional in nature, then

Pc - and the spreading factor in (208) reduces to

f (w) = i//• (215)
s

Expl: cit edge diffraction coefficients for certain geometries can

be found a [46].

1.4.3.5.3 Vertex Diffraction

For the field E (ý,s) diffracted from the vertex Q of a cone, a

plane angular sector, a rectangular parallelepiped, or a pyramid, we

have

F s -i(%,,s) (216)

Sj(s) Id ( L' dLLi Lrm s)

(dyadic diffraction coefficient for vertex) (217)

f W l (218)
S

In contrast to edge diffraction, expressions for the vertex diffraction

coefficients are scarce. They are available principally for wide angle

and narrow auigle circular cones, where the field point is away from
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shadow boundaries, reflection boundaries, and the surface of the cone.

Thus, the dependence of the vertex diffraction coefficients on the
Li Lrm

distance parameters i, L (m- 0,1, . . .) is unknown s. present.

However, it is apparent from dimensional considerations that outside

the transition regions the vertex diffraction coefficient must vary
-l

with complex frequency as s

Some frequency-domain results for diffraction by a circular semi-

infinite cone are given in [47]. Diffraction by a blunt tip is given

in [48], and the transient diffraction of a scalar wave by a narrow-

angle, semi-infinite cone can be found in [49].

1.4.3.5.4 Surface Diffraction

Diffraction at a convex surface is a less local phenomenon than

that at an edge or vertex, and for this reason its physical description

is more complex. A portion of the ray trajectory C follows a geodesic

between the points Q1 and on the &urface, as depicted in Fig. 24.

Thus, s + C0, where % is the straight line portion between Q2

and the field point P. In the paragraphs to follow high-frequency

expressions for the field and current are given at observation points

in the shadow region away from the shadow boundary. The accuracy of
these exprtssious increases as the observation point moves further
into the shadow region. If the observation point is in the illuminated

region and away from the shadow boundary, the geometrical optics term

dominates whose accuracy can be improved somewhat by including higher-

order terms from the appropriate Luneberg-Kline series. The GTD

description of electromagnetic diffraction at 4t perfectly-conducting

convex surface has been given in [50,51].

In discussing the diffraction at a convex surface, it is convenient

to introduce the factor

Tp(C ps) - exp - f ap(xs)dx (219)

which describes in part the amplitude variation and phase shift of the

pth surface-ray modal field between Q, and Q2" Here, ap is the complex
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Kteuto cosato the pth surface-ray mode. Later, the suer-
scrptsa ad hareadded to denote the soft and hard boundary conditions.

The ota fild anihesat the s'.irface in the former case, whereas the

n2ormal derivative of the total field vanishes in the latter. Expressions

for aand the other GTD parameters for the convex surface can be found

in Part 2.

top view4-shadow boundary

d~$Q1  ~ J~' 2  Q' d1(Q2),caustic

'b2  oniZ

top view
(source at 01)

IbI

side view
-auti boundary

(illurinak I region) In (shadow region)

0 diffracting

Fig. 24.uDffa atio atacnex ra

dif Op
ray

Fig 24 Difrctin a a onex urfce
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Diffraction where both the source point 0 and the field point P

are away from the convex surface will be considered first. The geometry

is shown in Fig. 24. Referring to (188) one has

F(O,s) = E (Qls) (220)

~s w~tF(& ,s) +ttG( ', ) (221)

and

fo(Pc+o (222)

is the net spreading factor for the surface ray and the diffracted

ray Q2 P. The tangential, binormal, and normal unit vectors to the

ray at the point Qi (i- 1,2) are denoted by 'tb ti .respectively.

Also in (221)

F(& ,s) - 'l) h s) (2s (223)
=1p p

-l-

G(ý ,s)- • D;(l,s)T (C ,s)D;(2,s) (224)

pu1 p p -ip

where D (i,s) is the surface diffraction coefficient at the point Qi,
p

and again the hard or soft boundary condition is identified by an

additional superscript h or s.

Next, let the observation point be on the surface at Q2 . Now,
the surface current and charge are of interest; they are determined

from (195) and (196). The current can be put into the form of (188),

i.e.,(2)

& 
(225)

~ (0,O.S)V(S)f f(E )e-ss/
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Furthermore, at high frequencies the continuity equation may be'approxi-

mated by

P(s) - j(s,) (226)

Referring to (225) with the source point at 0 away from the surface

one has

P0' ~j~s,(227)
I(,s n i(Qls)' Xts) (228)

dp1  (229)

where

i'r~s)h h h
(.Y p p (l,s)Th (t,s)A (2,s) (230)

and A sS) has the same form as 0('sS), except that the superscript

h is replaced by s. In the above expression the A h(2,s) are the

attachment coefficients required to convert the surface ray modal

fields to their actual magnetic field strengths at the surface, and

Yo i/zo.

From (226) the surface charge density p is given by

P(E a) .. j rd -~ s /c
S n • i(QIS)Yo I -s

i + Ž D (l,s)Th(; ,s)A (2,s) (231)
p- c s p s p

where the approximation

258

_____

'- , ,o .,, . .



iT 
s a/cL p

1h e u [Th(dNes)Ah( 2 ,s) d e 1

a ex (- s/c)

•i I isconeniet t trat he k rai o rom a sloc (232)rur

+ ]Tp)Ah2,sp_

Shas been used. Note that A n t(2,s) and su fare functions of an but in

generalthe y a reh slowy varying in comparison with T (Q al ) and

exp(-C a/c).

It is convenient to treat the radiation from a slot or aperture

in a perfectly conducting convex surfaoa by introducing an equivalent

source at each point Q, in the aperture. The equivalent source is the

infinitesimal magnetic current d:m or the magnetic dipole moment dm

defined by

d Im (QIs) = sp dm(Qls) - (Qls) ×I da, (233)
n1

where E(Qls) is the aperture electric field and da is an infinitesimal

area element at Q1 ' The electric field at P may be put into the form

of (188) with

ý(O,s) f d m (Ql,S)

(integration over aperture) (234)

(a n- (t Cs % ttG( SU S) (235)

1 d 1 2

Iý f sM - ýPc dý2 To( PPC +7C+0 (236)

iii which dp1 is the angle between the tangents to a pair of infinites-

imally displaced surface rays at Q1 and d*2 - dr2/Pc is tl"' angle between

the tangents to the same two rays at Q2 " In (235)
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I,0
F~ ,s - "(l~s)T h (ý s)D h(2,s) (237)Fs ) .1 p pp p

and G s(ý sS) has the same form as F(SUsS), except that the superscript
h is replaced by s. In the above expression the L (l,s) are the launching
coefficients for the surface--ray modes. Using reciprocity it can be

shown that

Lh = Ah, Ls A (238)p p p (28

When the observation point is on the surface at Q2' the surface

current is given by (225) with

F(O,s) = J (Ql,s) (239)

i2

f d'l(241)

where

S(,s) s Y hLh(ls)Th(C S)A"(2 ,s) (242)- Yo47 p=io p = i, p ps

and •s( s) has the same form as s (,sS), except that the superscript
h is replaced by s. Employing (226) one finds the associated surface
charge density to be

1 d*p
S 1  m Pc d 2

-S + 1 Lh(l,s)T h(• ,S)Ah(2,s) (243)
""4pc 1 s s p

For an infinitesimal electric current elementtI (QlS)dk at Q,
the diffracted electric field at P away from the surface is
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~(,s = ZI(Q 3,s)dP, F (t ,s)f (C)e-sc/c (244)

with

fd* W( Pc(245)

and the surface current and charge at are

~2Q2

p(C s) - _ 4(2c6)
C 2

Ifl.sd *(S~s)

+ L(1,s)T,(c S)Ah (2,s) (247)

H~
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SCALMDEING

1.5.1 THEORETICAL BACKGROUND

In any study of electromagnetic phenomena it is ultimately

necessary to determine the field quantities involved. If the system

is at all complex, an analytical solution of the problem may be I
impossible to obtain and a computer solution based on the use of

differential and/or integral equations prohibitively expensive. It

is then necessary to resort to measurements, and these may also be

desirable to validate any (approximate) theoretical and numerical

results that have been found. However, even an experimental study ofI
a full-scale EMP problem may be difficult and costly to perform because

of the size of the system, and it is therefore natural to look to

small-scale simulation or modeling as a means of facilitating the

measurements. This technique has been widely used, particularly in

scattering and antenna work where it is often convenient to perform

the measurements on a small-scale version of the original system, but it

can also be used co provide information about many other properties of

the system.

The modeling of electromagnetic systems is an important tool both

theoretically and experimentally. The method of conformal mapping is

an example in which a given system is modeled by another whose solution

is easier to find, and the desired solution is then obtained from the

model solution via the mapping function. The application of transform

techniques can also be viewed as a form of modeling, and such modelings

are often non-linear in the sense that the solution of the original

prý'jblem is not linearly related to that of the model. The concept and

feasibility of non-linear modeling in general is discussed in [1], and

though it would appear to offer some advantages over linear modeling,

the procedures have aot yet been adequately developed. We shall there-

fore confine our attention to the simpler case of linear modeling (or

scaling), whose value is primarily in connection with experimental

measurements.
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L The possibility of constructing a scale model of an electromagnetic
system is based on the linearity of the field equations and the principle

of electrodynamic similitude [2,3]. Within the confines of linear

modeling, it is necessary to exclude systems having any non-linear

component in the form of a non-linear impedance or medium (e.g., ferro-

magnetic material), or a component which is time-dependent. In such

cases, non-linear modeling is necessary to provide a precise simulation.

It is a relatively simple matter to determine the conditions for

a scale model to simulate the system. Consider a system in which Ert

and W (~t) are the electric and magnetic field vectors, where rdeos

the position vector of an arbitrary point and t is the time. If, in

the model, all variables are represented by primed quantities, we write,

following [4]

where p, T, g and h1 are respectively the mechanical, temporal, electric

and magnetic scale factors. We remark that four factors are all that'1 are needed, since only four fundamental units (mass, length, time and
charge) are required to describe an electromagnetic quantity. In both

systems the fields are required to satisfy Maxwell's equations and the

constitutive relations, and if c(+r) and i.'&r) are the (complex) permitti-

vity and permeability respectively, then at corresponding points of the

systems

P& ph(2)

In a similar manner the relations between the other electromagnetic

quantities in the two systems can be derived.

For any arbitrary choices of the scale factors p, g, h and T it

is theoretically possible to construct a model to simulate a full-scale
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system exactly. In practice, however, there are certain restrictions

on the factors due to the limited ranges of variation of e and ui in

actual media which can be used in the model. One of the media in theI

full-scale system is often free space (air) and it is generally desirable

to simulate this using free space in the scaled model, not only for

convenience but also because of the higher attenuation in most other

media. This is certainly customary in scattering and antenna measure-

ments, and it now follows that for these regions of the model

s £, e, P(3)

Since (2) must be satisfied everywhere, (3) must be true for all media,

implying

R& . . 2h(4)

from which we have

T mpt g-h (5)

The temporal and mechanical scale factors are therefore identical, as

are the magnetic and electric ones. Thus, for a system and its modelI

in a common medium, there are only two factors, p and h, which can be

arbitrarily chosen.

The restriction h - g imposed by (5) can be understood by noting4

that h/g is the ratio of the wave impedance at a point in the mo~el to

that at the corresponding point in the full-scale system. Since the

same medium is used in both, the impedances must be the same. NoteI

also that the restriction fixeia only the ratio of g to h and does not

restrict the choice of either. If h is left arbitrary, the model has

been termed [41 a geometrical one in which the geometrical configurations
of the lines of force are simulated but not the power levels of the

full-scale system. On the other hand, if a specific value is assigned

to h - g the model is an absolute one in which the power levels are

also simulated and quantitative data are obtained immediately.
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In spite of the fact that the power level used in a geometrical

model is unknown, it is still possible to obtain quantitative results.

The most common method is to employ a standard whose performance is

known. To illustrate the method let us consider the problem of deter- 4

mining the radar cross section of a target. if the model is simply a

geometric one, the scattered power is compared with that scattered by

another body such as a sphere, plate or corner reflector when placed

at the same position as the target and illuminated by the same field.

Provided the scattering cross section of the calibrating body is known

(usually from computations) the cross section of the target can be

found. This is the customary procedure, but note that if in the model

experiment the incident power is tapped and measured directly, h canI

be determined and the model. becomes an absolute one.

Let us consider now a geometrical model in which only the mechanical

scale factor p is assigned. The ratio of any full-scale length to the

corresponding model length is thus given by p, which is usually chosen
to yield a model of convenient size for the measurements. The relations

between some of the more important electrical (and other) quantities

are listed in table 1.I

Linear (or scale) modeling is an important tool. It can make

possible the study of a large system in free space using a small scale

version in, for example, the controlled conditions that an anechoic

chamber provides, but it is not without its limitations. If one of

the media is lossy it may be very difficult to find a material which

simulates this at the scale frequency and, in practice, it is generally

impossible to scale precisely the non-zero impedances associated with

any circuits, antennas, etc. The extent to which this is a majorJ
shortcoming depends on the quantities to be measured.

1.5.2 SCALE-MODEL MU~SUREMENTSI

The scale model actually used in measurements may be plastic

(assembled from a hobby-shop kit), a manufacturer's table display model,

or one specially constructed from wood or metal in a machine shop. Non-

metallic models are given several coats of silver conducting paint, and
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TABLE 1. RELATIONS FOR A PRACTICAL GEOMETRICAL MODEL

Quantity Full-Scale System Model System

length z 2' . Up

time t t' - t/p

frequency f f' = pf

wavelength X - ip

propagation constant k k' - pk

phase velocity v v' -v

permittivity (complex) e' e £

conductivity a a' -pa

permeability ' "

resistance R R' - R

reactance X X, - X

impedance Z Z' - Z

capacitance C C' - C/p

inductance L L' - L/p

scattering area A A' - A/p 2

magnetic field Al - Ah

electric field -

current (surface) density 11' - 1/h

current (volume) density p/h

current I I'-/hp

charge (surface) density P PI' p/h

charge (volume) density Pv pv,- pp/h

charge Q Q' Q/hp2
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mounting holes are cut as necessary for the accommodation of surface

field sensors. It is important to note that it may be impractical to

model, in the case of aircraft, its finer details such as wing flaps,

windows, or other airframe discontinuities. Even if this were possible,

the sensors used may not be small enough to detect the local field pertur-

bations produced by these discontinuities. Thus scale-model measurements

are best suited to the determination of "large-scale" currents and charges

on conducting bodies.

The configuration of the scale-model measurement facility at the

University of Michigan is shown in Fig. 1. Its major components are

Anechoic Chamber

C

, ,I•Reference

-Pas Amplitude j Signal Source
Receive- 0.2- 4.0 GHz

- printoutr r

SPost-procen- plots

Digital Control Lagupt -punced cards
and O . ... -

Data Acquisition Computer - magnetic tape

- punched tape

, o Signal flow
Terminal

-.. - -Digital control

Fig. 1. Surface-field measurement facility at the University

of Michigan.
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the tapered anechoic chamber 50 feet in length, the signal source, the
Sreceiver, an h oto n recording equipment. Thssystem i

linked to a large computer where the data are processed. The operating

frequency range of this facility is presently 0.45-4.25 GHz. In

practice, the maximum useful frequency range for scale-model measurements

is 0.1-i10 GHz. Below 0.1 GHz standard absorbing materials no longer

provide a good simulation of the free-space environment, and above

10 GHz it is difficult to make sensors which are small in comparison

to wavelength and yet have adequate sensitivity.

Some typical probes and sensors used in measurements are shown

in Fig. 2. The AFWL-designed sensor series MGL-8 and ACD-1 [5] are
useful on larger models (linear dimensions > 50 cm), but on smaller

models it is usually necessary to rely on miniaturized sensors which
or are specially fabricated. These typically take the form of loops,

half loops, and monopoles made of 0.52 mm diameter coaxial cable.

These small sensors may be individually calibrated; or it may be more

convenient to calibrate the entire system of which the sensor is a part [6].

MGL-8A(R) B-dot ACD-IA(A) D-dot

B- dot D- dot B- dot

Fig. 2. Types of laboratory-made sensors used in scale-model measure-

ments. The top ones were developed by AFWL and those at the

bottom were made in the Radiation Laboratory at the University

of Michigan.

273



The accuracy of scale-model measurement data can be dc -ermined, at

least for simple test objects, by comparison of the data with theoretical
predictions. In the Michigan facility, the measured data agree with

theoretical predictions within ± 0.5 dB in amplitude and ± 2.50 in

phase for a spherical test object. The sphere is probably too simpleI' a test object to adequately determine model measurement errors. However,
the following sources of error can be identified from experience at the

University of Michigan [7,8]:

(a) Background noise as evidEnaced by a measured signal in such

cases when, from symmetry, the true field component must be

zero. This encompasses the effect of equipment (thermal)

noise, the impurity of the field in the chamber, errors in

the alignment of a sensor on the model, signal and gain

instabilities of the equipment, and possible interactions of

the sensor lead with the model. Such noise can be pictured

as a circle of uncertainty about the measured value in the

complex plane. When all quantities are normalized to the

incident field value, the magnitude of the noise signal is

typically of order 0.2, and the signal itself can be written

as 0.2 exp(jop), where tp is arbitrary. The error due to the

noise is therefore only 2 percent for measured fields of

magnitude 10, but can be as much as 20 percent (or larger)

at stations in shadow regions where the field amplitudes are

unity or less.

(b) Phase errors due to errors in positioning of a model with

respect to the incident field reference plane. With adequate

care it is possible to position models to within ± 1.5 mm of

the desired location, which translates to an average phase

error of ± 4 degrees. In many instances, however, the models

) themselves are not accurate to this extent, leading to an

additional phase error.

(c) Errors produced by sensor integration when measurements are

made near edges and small-radius surfaces that create fields
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which are non-uniform over the dimensions of the sensors.

Although the sensors used are only 2 to 3 mmin size, the

averaging effect can produce as much as 20 percent reduction

in amplitude with models as small as a 1/383 scale E-4 [8].
Fortunately, the trend is to the use of lower measurement

frequencies a-ad larger models for which the integration

error should be no more than about 5 percent.

The probable error resulting from these effects differs from case

to case, but from comparisons of data using different scale models it

would appear that in most circumstances results can be obtained which

are accurate to 1 dB in amplitude and 10 degrees in phase, provided

good models are available.LI
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CHAPTER 1.6

ERROR ESTIMATION

The application of theoretically or empirically derived formulas

to the prediction of the behavior of a given system necessarily involves

some degree of inaccuracy, since a mathematical model of a given physical

system can never take all of the features of that system into account.V The essence of mathematical or scale modeling is to treat those aspects

of the system that are judged to be of the greatest importance and to

ignore the remainder. Thus, given judicious choices of models and

accure~timathematicai analyses, one can predict the behavior of the

modeled system with a certain degree of accuracy, but never with exacti-

tude. It is therefore desirable that the accuracy of a given theoretical

model be estimated and that this estimate be used in conjunction with

the application of the mdlto aspecific system [1,2].

Since the systems considered in this document (e.g., aircraft and

missiles) are so complicated, they are broken down for modeling purposes

into sJ~mpler subsystems which are amenable to analysis. The basis for

this decomposition is the topological concept described in Chap. 1.2.

Given the error estimates for the individual subsystem analyses, the

problem of error analysis for the system itself becomes that of properly

objective of this chapter to present a formalism by means of which this

error-combination process can be accomplished.

Since the error in a given subsystem analysis is not precisely

known, a probabilistic approach to the problem of error description

will be useful. This approach and its method of application are

described in the following sections of this chapter. We begin inI

Sec. 1.6.1 with a general discussion of linear E1Mfl interaction models

and of the probabilistic description of the system response functions in

the frequency and time domains. Then in Sec. 1.6.2 are considered theI

input quantities required for the error description of the stimulus and

transfer functions. The error description of an elementary (single-

path) response function is developed in Sec. 1.6.3. In Sec. 1.6.4 we
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discuss the problem of error analysis for series and parallel interaction
paths. Confidence bounds are considered in Sec. 1.6.5.

1.6.1 GENERAL CONSIDERATIONS

The EMP interaction problem is assumed to be linear and describable
by frequency-domain relations of the form*

III I

Rij (w'[VnJ;1 ") = Tui(W'[V];0)Sij (W;O) (1)

in which

Selectromagnetic field frequency in radians/sec; w

= 27f, where f is the frequency in Hz.

[Vn] - vector describing the electrical state of the

system; n=1,2. . .,N.

Z. = th topological layer or shell of shielding in the

interaction problem; k - 1,2,... ,L.

Rij(w,[Vn];X) - frequency-domain response at the ith

response point in the Ath layer, due to a stimulus

at the jth point of entry (POE) of the Zth layer
1 =1,2, ... ,I(ýZ); j - 1,2, ... ,J(M .

S.(w;2;) - frequency-domain stimulus applied at the jth POE

of the Xth layer,

Tij(w,[Vn];) = transfer function which produces

Rij(w,[Vn ];) from S (W;X).

The total response Ri(w,[VnI;0) at the ith response point to the

J stimuli is given by the sum of the individual responses, viz.,

4R(w, nv] ;2,) ij (w, [Vn;z)
j=l

In this chapter, frequency-domain relations are expressed in terms of

real radian frequency w (i.e., s =jw).
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which gives, in view of (1),

The transfer functions T may themselves represent several series and/or

Sparallel interaction subpaths, and are then expressed in terms of elemen-

tary transfer functions im as
lip

P(i J) M(p,lj) -

p-I rn-i Lijp n

in which Tm denotes the transfer function of the mth series portion of
iJp

the pth parallel subpath. P(ij) denotes the number of parallel subpaths

linking the jth POE or stimulus point to the ith response point, and

M(p,ij) is the number of series segments of the pth parallel subpath. I
These transfer-function relations are shown in Fig. 1. The time-domain

response function Ri (t,[Vn];g) is the Fourier integral of the frequency-

1.1 domain response Ri (w,[V[];Z), namely 1 !Wt
iIj nw, I Vf Ii;k) e d' (4)

- j(t,[VJ;Pi d j W

t The error estimation problem for the linear interaction model which

•as been described above is that of combining errors in the transfer

functions and the stimulus functions to obtain the resulting

error in the frequency-domain response Ri. From the error in the

frequency-domain response, one may calculate the error in the time-domain

H ,response by evaluating a Fourier integral.

We shall assume in the remainder of this chapter that i~ ~ (or

and represent the true values of the response, transfer, and stimulus

$ functions respectively, and that the predicted values of these quantities
••-Rare respectively iJ (or i p), and S . We may then treat the Rijo
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(a)

, I

!/ , , Tij

E 4.......t laysr

TIJ

jilStimulus point -i" response point

1P)

S(b) ____

j1h stimulus point i t~ response point

( 9TiC,"T J* "', T
Tilp UlPAli

stimulus point response point

Fig. 1. Illustrating transfer-function te.latioUs for linear interaction

model. (a) Interaction paths; (b) parallel inLeraction subpaths;

(c) series interaction subpaths.
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Ti, and S as confidence-error random variables distributed around the

predicted values Rij, Ti, and S More precisely, Rij, Tip, and are

stochastic processes with parameter w, whose sample functions are distri-
buted around the functions Rij, Tij, and S If it were possible to

o n op e bti and S t r

obtain a complete probabilistic description of the random processes n (W)

and :(w) in terms of their joint probability density functions, one

could derive a complete description of the response process Rij(w) and

thus of its Fourier integral Rij(t) [3,4]. Such an endeavor is far too

complicated to be pursued here; rather, we shall focus our attention on

a partial probabilistic description of the time-domain response process

Aij (t) and determine what frequency-domain information is required for

such a partial description.
We shall describe R (t) in terms of its mean (or expected value)

and its variance. These are defined as [4, pp.138 ff.].

Z{Rij(t)} - Ruj (t) - expected value of R ij(t)

varRij(t) i(t) - Rij

2 2

& denotes the expectation operator. The mean function Ri (t) exhibits

the central trend of the sample functions of the process Rij (t); the

variance function measures the amount of spread of the sample functions

around the mean. A closely related quantity which we shall also consider

is the expected value of the energy in the response

- ~ [ -J [ 1(01]2 dt
; &(E~~ij) =ij = [ijt)2d

- var{Rij(t)}dt + f R iT-- 2 dt (6)
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The frequency-domain quantities necessary for the determination of

the mean and variance of Rij(t) and the expected value of the energy

in the response are the mean and covariance functions

ii( = (ij
,,,I (7)

-:RJ(• .. * I
covi(). Rij(,W')} - -ij(w)R j(W') ,i,(w) i W')

since, as is easy to show,

Rij~ ~ Wij M eiWt dw 8

var{R j(t) I (1)2L ) f ovij) ijWt)Ieidww~ dw'

f-40 CofijW'

Equivalently, we may consider k (w) and the correlation function i

cor{•ii (W). Ri (,,)} Ri (WARi * W)
ij ijij ij(9)

cov{fk (W), ki (•,')} + i (W,) k W(•) .

I

The error-analysis problem therefore reduces to that of determining

the mean and correlation (or covariance) functions of the frequency-

domain response process ij (w). These are expressed in terms of the

stimulus and transfer functions as

i(W) - Tw)

i(W)W(W) = iZ(W)i*(W')S(W)9S*(W')

in which the subscripts have been dropped.
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We shall assume that the frequency-domain processes T(w) and S(w)

are uncorrelated; this assumption is reasonable in view of the linear

model under consideration. Thus (10) simplifies to

(11)

* ~* v ~

R(W) (W' T(W) (W') S(W) CW)

and the mean and correlation functions of k(w) are simply the products

of the corresponding functions for T(w) and S(w). In the next section

we will turn to the problem of evaluating the mean and correlation

functions of T(w) and 9(w) in terms of an assumed error model.

1.6.2 ERROR SPECIFICATION FOR STIMULUS AND TRANSFER FUNCTIONS

The transfer function T(w) and the stimulus S(w) can be expressed

as the sums of the predicted values of these quantities, Ti() and 9(w)

respectively, and error random variables T W() and e (W)
t s

§(W) - s(w) + es(C)

Expressing the mean and correlation functions of T(w) and 9(w) in terms

of this representation, we find that

T(w) + e (W)
t~A

•(w) § s(w) + s Cu)
(13)

Ti()T* C') - T(u)T Cu') + T(,)e Ct(u')

+ T (w')et(W) + et W)et~u')
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§(W)S (WI) -SMwS (W) + S(W) (W')

+ S (W)i (W) + e (W); OW) (13)

The quantities necessary for the error specification of T(w) and 9(w)

are teeoethe menadcreainfntoso h error random

Nowwe ntrduc cetai asumpion coceringthe error random

var~iables (wM and (w). The fundamental assumptions are that

(a) the magnitudes and phases of Z (W and i (w) are independent

(b) the phases are uniformly distributed on intervals of width 21r.

These assumptions imply that at a given frequency w, the point Tim in

the complex T-plane is surrounded by a "circle-of uncertainty" whose

radius is measured by Ii Mw)I. The probability that t(w) lies within
t

a distance jtoj of the point T(w) is therefore given by [4, p. 94]

I to I
P 11t(~ -iIo1 f Iit(w) I ()dT (14)

where

f 4 probability density function of the random
-itM variable Ia t(W)I

Similar statements also hold for 9(w). As an example, if I& t(W)I has

aRayleigh density and a mean-square value Iý(wI u< w)> then

2T 2,t~
f(Tr) 2- e(5

for T > 0, and zero otherwise; and (14) gives

PjIat(w)I S It_ I} 1 - exp(-It012/<(2(W>)(6
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The above two assumptions also imply that et(w) W e (W) - 0, so

that there is no systematic bias in the predicted values T(w) and S(w);

if such a bias were known (or suspected) to be present, it would be

incorporated into the predicted values. Thus the zero means of t

and W (w) can be considered to reflect a maximum degree )f ignorance

concerning these errors.

It is also convenient to express e (W) and es(w) as' being propor-
A A t

tional to T(w) and 9(w), respectively,

(17)

•. (w) - i5(w)S (w)

in which the constants of proportionality are the random variables i (w)

and i U(). These random variables have phases which are independent of

their amplitudes and which are uniformly distributed on intervals of width

2w. Their mean-square magnitudes are respectively ad2 >.

r The expressions (17) are useful for dealing w:.th frequency-domain

error estimates expressed on a fractional or percentage basis.

The above two assumptions permit us to write

!(W) T( )

s(w) - S(w) (18)

T(w)T*(T') - T()T*(w') 1 + it(w)it(w')

S(M)S W(') S(w)S (W') + x (W)x W)

from which it is easily shown that
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(19)
cov{T~w), (W')} - (w)T*wj tw)<('

ov~r§(w (') } -<i 2* -var{i(w)} m <2 (w)>IT•(w)1 2

It is apparent that the correlation functions of the error random

variables xi(c) and iM(c) are the quantities which are necessary for the

determination of the mean and variance of the time-domain response. These

correlations could be readily evaluated if the joint probability densities

of i (M) and i W(c), or is(w) and i (w'), were known. It is, however,
t t a

unlikely that such information would be available in a practical situa-

tion. Thus we must either be provided with the actual or estimated error

correlation functions themselves, or be satisfied with such information

concerning the time-domain response as can be gleaned from a knowledge

of the mean-square values > and 2~ )> nd <~w)>alone.

In the next section we consider the combination of these error

specifications into error measures for an elementary or sirgle-path

response function.

1.6.3 ERROR ANALYSIS FOR AN ELEMENTARY RESPONSE

When the input-output relation in the frequency domain is of the

form 1(w) - i(w)S(c), we say that the response is elementary. The mean
and variance of the frequency-domain elementary response are

-(W) T'ci)S(c' ) S R(w)

(20)
var{A(w)} - ii(w)12 [(1 + <K2(w)>)(l + <i2

and the mean-square value of i(w) is
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jI (w) 12 -var{R(w)} + I kw) 12

i

(21)
=,,,(W)12(l + <j~2(w)>)(1 + <-2(w)>)

From (4) and (20)i the expected value of the time-domain elementary

response is

R(t)in- R(*~e ~dw R^(t) (22)

Thus, the expected value of the response in either domain is identical to

its predicted value.

The variance of the time-domain elementary response is

var{R(t) 2)j R( (w') M+ W)
"27 i~J•*t' i W~x~ ) + it(•0)it*

(23)

+ k••() (W) it (wMi( W) }ej(W -W')tdwdw

It is apparent that var{R(t)} will be difficult (or at least tedious) to

evaluate, except perhaps under very special circumstances. Furthermore,

it is probably unreasonable to expect that the correlation functions
i (o)i (W') and i M()i*(W)I would even be available for use in (23).

5 5t t
Therefore, although (23) is a correct expressiou for var{R(t)}, it may

not be practi.ally useful. Thus we must seek an alternate measure of

the variance of the time-domain response.

It is not difficult to show that the integral of var{R(t)} over

time is

varfR(t)}dt - #-"J var{R(w) }d

"R<"W <xt (W)>+<is(W)><xt (W,> dw
- 6

=E- E° >_0 27(24)
287
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in which B denotes the expected value of the energy in the response

and E0 denotes the predicted value of this quantity, namely,

(25)

B" 1 1-(W)12dA 2R [w(i(t)] d
T-oB

Thus if R(t) has a reasonably well defined duration, say T, then the

variance of R(t) can be estimated by

varjR(t)} T CE (- E°) " - -i (20

An estimate of the relative fluctuation f of R(t) around its expected
r

or predicted value is then given by the quantity

(E/E° - 1)½ > 0 (27)

r=

If the mean-square errors s()> and ,xt(w)> are indepandent of w,
then

E 02 >+ <>2> <2t>)arR t) I t's8't
(28)

f (<-> + <2> +<2 ><(2t>)ý

In the next section we discuss error measures for non-elementary

response functions, i.e., those arising from series and/or parallel

interaction paths.

1.6.4 ERROR ANALYSIS FOR NON-ELEMENTARY RESPONSES

f In this section we will discuss the development of error measures

for response functions resulting from series and/or parallel interaction
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paths. The series came will be treated in Sec. 1.6.4.1, and the parallol

case in Sec. 1.6.4.2.

1.6.4J1 Series interaction Paths

The transfer function T (w,[VI] ;1) which represents a series

connection of interaction subpathe is represented as a product of

individual transfer functions:

- HMp1i9j)
T jpW.CV ];0)- T(W.[V ];L) (29)

in which F (w) represents the transfer function of the nth series

portion of the pth parallel interaction path. There are XI such portions

comprising the pth parallel path. We assume that the errors in the

series subpath transfer functions are uncorrelated, i.e.#

e0 MO)e-~~• -M ; W a-p(to)) 0 (M 0 a,')
tp tp tp tp

(30)
- <3(~2> (

whore

Under this assumption, we readily obtain the following results (the

i,j subsuripts are dropped)

T (wa) -i (w) - fl~ w
p p p

(32)

+ ()x ? u'wp pP ,M1 ,p tp

in which () p

1) fl T W)T (33)

- I1
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Now by incorporating these results in the analysis of the previous

section, we obtain the following error measures for the response R p

A • A

ip(w) - Rp(w) - S(i)Tp (W) (34)

-ar{pMI I - Lp(W + < (W)_>I2 1)>] 11 + +<•'p(W) 2 >]-

""iap(w) 2- Ip(I)l 2 (35)f 1

R (t) - Rp(t) (36)

In the sp/.a as hee<(w)\ and Xp ( ii2>i( - 1,2,3,.. ., M)ae

Ep "hEO(1l+<Xs>) fi [1+<(~tp2>] (39)

p mL

var{R(t)} - (i +<i 2 >) n ll +<MtM )2>] - (40)

2 + ý ) I [I[i +Xp -m (1 (41) 1

~(-iKi> a L\ttp 2

rn1

MI
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1.6.4.2 Parallel Interaction Paths

The frequency-domain response i(w) resulting from the presence of

parallel interaction paths is represented as the sum of the responses

due to each of the parallel paths, namely,

-P

R i (w) (42)
p.i P

If we assume that the errors arising from each of the P parallel paths

are uncorrelated, then we obtain

-- - P
() R(W) (43)

pwl p p.1  p

P
var{R(w)} - I var{i (w)} (44)

p-l

cov{R(w), R(WI)} I cov{i (W), A. (w')} (45)
p-i p

in the frequency domain, and

P P 1
R(t-)u I -(-t)- I i (t) (46)

pip pip

var{R(t)} = I var{R (t)} (47)
p-i

in the time domain.

Denoting by E and E the expected and predicted values of the energy

in the total response respectively, and by E and E the expected and
p p

predicted values of the energy in each of the P response functions

Rp(w) or Rp(t), we can show that

P _

E (E E- ) > 0 (48)
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It is important to e aphasize that in general i

P

P

p.1 p

since, e.g., If [lc) + A2 (t) 2dt ÷ f i[(t) + ^2(t)]dt

In the following section of this chapter we will discuss confidence

bounds on the errors in the response functions.
Mi

1.6.5 CONFIDENCE BOUNDS

A confidence bound on the error in a given quantity of interest

is the probability that the error is greater than, or less than, some

specified value. For example, consider a random variable v which isI

the sum of a "true" value v° and an error random variable e

v = v0 + ev (49)

A confidence bound on the error in the quantity v would be expressed as

P{ ev >e_ } <b(e) (50)

in which b(e 0 ) is a function of the real, positive variable eo.

Consider as a specific example the case for which levI is a
v 2

Rayleigh-distributed random variable with mean-square value <ev>.

Then it is easy to show that

P{levl > eo_} - • /<e (51)-- 0 v
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i ; and therefore that, e.g.,

~r Ielv 1 2+•>+ " .o18
qv

P{levl >_e2,>1 - 0.368 (52)

_Pie I -i<e 0.7791 >

If the probability density of the random variable of interest is not

known. it. is possible to obtain general (but not necessarily tight) con-

fidence boum.s. A useful starting point for such confidence bounds is the

inequality of Bienaymi [4]

SP{ix-al >_} <. -{1-La} (53)

in which x is a random variable and a, a and n are parameters. In this

chapter we have aesumed that mean-square values of the error ranodi

variables of interest will be available; so let us choose a-0, x-ev,

awe 0 , and n-2. Then (53) becomes
i"i

P{ileI> I} <-e 2'>je 2  (54) I

v v a

which i a confidence bound expressed in terms of the mean-square value

of the random variable ea. To demonstrate that this bound, because of

its generality, may not be a tight one, compare (52) with similar

results from (54)

P -j11j 2(e ->I 0 (55)

Pfle,,I >_• < 1.0

*/J
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Since the probability of any event is less than or equal to unity, the

bound (54) is useful only when <a2>: e

As a simple example of the application of a bound of the form of (54),

consider an elemmntary frequency-domain response

imw - I(W + r (h)

-i(w)[1 + ir(W)] (56)

R()l+ it(w) + is(w) + it(W)is(w)] *
The maan-square value of the relative error !r(W) is

-2 -2 2 -2 -2(5)i<X (W)> <i <(W)> + <X (W~()> + <-(xtW)ý<:i(W)> (7

Thus, from (54)

P£ji_(W) X < 1 [2&a> +<. 2(w)> +_i 2(W)> -2 (w)>] (58) I
r o -2 .I's <:i

X0

where xo is a real, positive parameter. If

<i2(w)> . <(2(4)>½ . 0.10 (59)

then, for example,

P{Ii_(w)j 1 0.25} < 0.32 (60)

implying that the probability that the magnitude of the relative error

in the response exceeds 25Z is less than 32%.

Examples of the application of the Inaterial in this chapter to

specific problems will be found in Sec. 3.2.5.
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CHAPTER 2.1

aircraft, missiles, satellites and buildings depends upon many factors.

To make the interaction analysis tractable the entire process is

separated into three approximately Independent parts which ac...unt for

the external interaction, the mode of penetration to the iv..erior of

the structure, and the excitation of the elements of the Alectrical

system within the structure. The approximations involv:ed in this

procedure are that the electromagnetic field external co the atructure

is independent of the interior system (i.e., 'ixr a.rcem must be at

mode of penetration is insensitive to the components of the system

interior to the structure. This chapter deals with EMP interaction

with the outer surface of the outermost layer of a system in the

topological, model, for example, the exterior surface of the aircraft

:s:i:n:.cfed. Temoe ffedpntato rfreap

Ssessuch as aircraft and missiles generally have a complete or

nearly complete metallic covering that serves as a shield against external

(a) the penetration through windows and holes in the metal covering,

through joints in the metal skin, through cracr-s around access doors

and through exhaust ports; (b) the direct excitation of electrical

cabling, power lines or other conductors that run outside the metallic

covering over a portion of their length and then run inside to some
internal subsystem; (c) the direct excitation of system antennas; and

(d) diffusion through the metal skin. Engineering data and formulas

pertinent to each of these penetration modes are presented in this

chapter.

'11 2.1.1 COUPLING

The 124P generated by a nuclear detonation depends upon the height

of the burst, the specific device, the distance from the burst, the
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height of the observation, and other factors. Instead of considering

every possible example of EMP environment, only two canonical environ-

ments are presented followed by two convenient approximations. A more

general treatment would require canonical environments to be constructed

using averages extreme values (upper and lower bounds), and perhaps
statistical distributions of pertinent EMP environmental parameters il].

A case of particular interest is the so-called high-altitude EMP I
resulting from an exoatmospheric nuclear detonation. Beneath the source

region in the upper atmosphere the EMP is generally approximated as a

spherical wave, while over a small portion of the wave front the EMP

may be considered a plane wave with linear polarization (or more accurately,

circular polarization with a very slow precession rate). The electric

and magnetic fields of the plane-wave EMP can be expressed as

r,t) 1(t- I/c)
Y

H(r, t) x 1Ix(t -1 4r/c)
-; 0 Y Y

where is the waveformt is the unit vector in the direction ofY
propagation, Z0 is the free-space wave impedance and c is the vacuum

speed of light. At points in the vicinity of the earth's surface, plane

wave reflection can be used to obtain the total electromagnetic field.

Throughout this chapter the plane-wave fields as given by (1) are used.

2.1.1.1 Difference of Two Exponentials

One commonly used EMP waveform is given by the difference of two

exponentials multiplied by a unit-step function u(t), viz.

[ t/Tf e-t/-r )UM

f(t) Eo(e - e u(t) (2)

with the Laplace transform

Eo E0
F(s) -Z{f(t)} 1 + (3)

s~/f B+/r
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where, typically, the rise time Tr " 2 nas and the fall time T - 250 nas.

A plot of (2) is shown in Fig. 1. This waveform turns on at t -0+ with

a finite slope, reaches a peak value in a few nanoseconds, and decays

slowly to zero. Its important time-domain characteristics are sumearized

in table 1 and its frequency-domain characteristics in table 2.
2.1.1.2 Reciprocal of the Sum of Two Exponentials

Another canonical waveform coming into common usage is the reciprocal

of the sum of two exponentials given by

0fct) -(o~o/ , tt), 4)
e 0 r +- 0 Tf

Fig. 1. Two canonical .. P waveforms: T r 2 no, - 230 na, to MO.
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with the two-sided Laplace transform

F~s)Ew T r Tf rfc Tr (+1)10 (5
r +T ITC r+T (Tf 5)
r f r f

This type of waveform, shown in Fig. Iis s!AilAr to the wvveform (2)

except that the rise is of an exrunential form with no discontinuity

in the function or its derivatives. Consequently, the waveform (2)

has much more high-frequency content and a correspondingly faster

(10%-90%) rise time for the saw parameters Tr and Tf. The waveform

(4) is of interest because it is wore consistent with the exponential

growth of the nuclear radiation emanating initially from a burst. Its impor-

tant time- and frequency-domain characteristics are given in tables 1 and 2.

2.1.1.3 Unit-Step Pulse

Many interaction applications depend primarily on the mid-frequency

content of the EM, i.e., 1 MHz < f < 20 MHz. In this case the frequency-

domain representation

F(s) - E /s (6)

apprcximates the aid-frequency content vary well. The inverse Laplace

transform of (6) yields the unit-step waveform representation for the

f(t) - E0 u(t) (7)

which is mathematically more convenient than either of the canonical

waveforms (2) and (4), and yat its interacticon ýs essenti•ly the same

as the "a&tual" EW interuction over an appropriate frequency range.

M 2.1.1.4 Unit-StopWih onential Decay

Another iaih-ematically simple waveform approximation to the EK?

is the unit step with exponential decay

f(t) - Eoe u(t) (8)
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with Laplace transform given by

EF~s) - 0
s + 1/Tf

which accurately represents the low- and mid-frequency content of the two

canonical pulses (2) and (4).

2.1.2 PROPAGATION

2.1.2.1 Low and Intermediate Frequencies

In the study of EMP interaction with the metallic or other highly

conducting covering of electrical systems it is expedient to idealize the

actual surface configuration of the covering. Results for such idealized

configurations should be, to a suitable degree of approximation, appropriate

for the actual configurations. In this section, both frequency-domain and

time-domain results for the external surface current and charge densities

are presented for a few generic configurations -- the prolate spheroid,

the right circular cylinder, and perpendicularly crossed cylinders. More

complex structures such as the intersecting cylinder model and the body-

of-revolution model of an aircraft are also treated. In each case the

incident wave is a plane-wave EMP. Questions of modeling procedures and

accuracy are also addressed. Sample calculations are provided to illustrate

the applications of the formulas, tables and parametric data curves.

2.1.2.1.1 Prolate Spheroid

A common idealized configuration is the prolate spheroid (Fig. 2).

As h - a the spheroid becomes a sphere,and for h >> a it approaches a

slender rod. Hence this configuration has a wide range of application.

The transformations between the cylindrical coovdinates (z,r,o) and

the prolate spheroid coordinates (tCO) are (Fig. 2)

z - he

r - he/ 2 - 1) (1 -2) (9)
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z~h.0.S

n~onst.-\

- I
/ ~~I \g~ CflI

Fig. 2. Plane wave broadside incident on a prolate spheroid.

where the eccentricity e is given by

e - /I- (a/h) 2  (10)

a. Quasi-Static Surface Current and Charge Densities

At low frequencies for which the wavelength X >> h, the quasi-static

approximation may be used to obtain the induced surface current and charge

densities J and p(ý,ý,s) on the spheroid. When the incident electric

and magnetic fields are directed parallel to the z-axis and the negative

y-axio, respectively (Fig. 2), one has [2,3]

-,2H) i -e 2

2 - a 0 -2ý2 C sin (11)

j2(H,,,s) = cos * + se a -( ) A (12)

i o0

p (r, s) - - 2 - (13)
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where

(1 1 + k e (14)
0 e 2 L2e \(+)eI

Note that on the surface of the spheroid

1* l/e, - z/h (15)

Eqs.(11) - (13) are derived from exact solutions of a magnetostatic and

an electrostatic boundary-value problem.

b. Intermediate-Frequency Surface Current and Charge Densities

In the mid-frequency range where A -- h, the total surface current

density on an electrically thin spheroid (X >> a) may be obtained by

combining the quasi-static current distributions, (11) and (12), and

the total axial current I(ý,s), namely [4]

- (,s + 2H i (s) ~ -sin + cos (16)
27rr 2 2-a 1-e 242

where r - a /--7C, and the first term on the right-hand side reduces to

the second term on the right-hand side of (12) at low frequencies.

The singularity-expansion representations of the total axial current

I(ý,s) and the corresponding surface charge density p(ý,s) are [5]

1l

(s l[ (s-) + * - , a(s)ic(,) (17)

P~rs 00 no,(S1~sx (a P ) (18)

a! a a s ) OL( -

where the class-2 coupling coefficient na (s), the natural modes i (C) and

Pa ( and the natural frequency sa are given by [6]
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ha2s - i( )• (Cs)dC (19)

ii () - sin[aTr(l+)/2] (20)

(cos[a(l+ )/2I (21)
a ~4ah22 /e2•

a [Jala - E(2air)] (22)

Here, the antenna parameter 1Ja and the function E are defined by

ýa 2 kn(2h/a) - 0.614 (23)

E(2afT) -0.577 + kn(2cw) - Ci(2a7r) + S $1(2ar) (24)

aad Ci and Si denote the cosine and sine integrals [7].

In the case of an incident plane wave propagating parallel to the

x-axis with parallel to the z-axis (Fig. 2), the coupling coefficient

ra defined by (19) is found to be

n(s) 8c Ei(s)e a 1,3,5,... (25)aL UZo a

for slender spheroids (a << h). Formulas (22) and (25) are tabulated in

tables 3 and 4, along with the solutions obtained by some elaborate

numerical methods.

The frequency-domain current I(0,jw) at the mid-points of several

thin prolate spheroids and the frequency-domain charge density p(ljw) at

their tips are tabulated in tables 5 and 6 for a broadside incident plane

wave (Fig. 2). Although only two modes from (17) and (18) are used in

the computation, the computed results differ from the exact results for

j'~1 305
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the induced axial current by 3ess than 50Z, and at the first resonance the

difference is less than 16%. It is expelated, however, that the accuracy

of (16) is considerably greater than that: of (17) because (16) Involves

an accurate determination of the contribution of the quasi-static current.

The accuracy of the formula (16) should be within about 15% of the actual

value induced on a prolate spheroid.

As mentioned in Sec. 2.1.1.3, the intermediate-frequency representation

of the nuclear EWP is given by

d Ei (s) - Eo/s (26)

which is the spectrum of a unit-step pulse. When this expression is
substituted in (17) and (18) and inverse Laplace transformG are performed

one obtains the following time-domain results

.(t -ch/c cos ) 1
I(Ct) - 2Re r•(sa)iM(O)e sa u(t-c h/c cos e) (27)

sa(t- 4 h/c cos e)h/p(ý,Q) - 2Re (as l)pa(;) e a 1u(t- C h/c Cos 0)

(28)

where Re denotes the real part of the expression, and 8 is the angle between

the z-axis and the direction of propagation (Fig. 2). Expression (27) is

plotted in Fig. 3 for 0 - 90* along with some accurate numerical result

for a right circular cylinder 19].

c. Simple Estimate of the Time-Domain Current

For the class of slender cylinder-like objects it is possiblq to

derive a simple formula for estimating the time-domain response of the axial

current to a unit-step incideit pulse. First, the object is represented by

an equivalent right circular cylinder (thus the object must at least be

similar to a cylinder) with an equivalent radius aeq defined as

] aaeq E P/21r '(29) '1
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a/h 3 0.01~~ T I Volt/m

hI

0 

0

20-

H h

.1. -10

S-- numerical solution [91(right circular cylinder)
-. 0 o0000 formula (27)(only three modes are used)

5 lb 15 20 25 30
ct/h

Fig. 3. Total axial current at z-0 induced by a unit-step pulse.

where P is the perimeter of the cross section of the object. 1ote that

this procedure for estimating the current is valid only when

L >> aq (30)

where L is the total axial length of the object.

Second, the axial current is obtained by using [101

309



LHi
I(zt) - L/I4 fi(z/L, ct/L) (31)

Ln(L/ 4aeq)

where I(z,t) is the current through the cross section at z at time t and

Hi is the amplitude of the incident magnetic field. The function f1 is

presented in Fig. 4 for z/L - 0, l/4,and broadside incidence.

4.0 ' I ,I'
U= • -zm+h

3.0 u

4 k

I0" •V II I!

2.011

1 .0 zh

]%

0. -~

-1.0 2.

-2.0 I

-3.0
0.0 2. 4.0 6.0 8.0 500 12.0 140

Fig. 4. Normalized axial current for a unit-step incident pulse.

u z/L, T ct/L; L 2h.
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d. Ground Plane Effects

If the ground is highly conducting, i.e., if oa >> Weg where a and

&g are the ground conductivity and permittivity, then the interaction of

the object near the ground can be treated by image theory (Fig. 5). In

this case the ground plane can be replaced by the image of the object over

the ground. Both the object and its image are then considered to be

illuminated by the direct plane wave and the ground-reflected plane wave
(the plane wave from the image source). For a poorly conducting ground,

however, a much more complicated analysis is required (see, for example, [11]).

Two specific orientations are of primary interest, 00 " 0 (horizontal

wires) and eo W n/2 (vertical wires). For the vertical configuration the

interaction between the wire and its image can be neglected if h-L/2 >> a,
where the wire length is L, the wire radius is a and the height above ground

of the center of the wire is h. In this case the current and charge induced

on the vertical wire can be obtained ds described above except that now there

are two plane waves incident on the wire (direct- and ground- reflected).

VE

ground plae,, ,, / 0 / oj groundplane

% I

' image wire

Fig. 5. Arbitrarily oriented wire close to a ground plane with image
wire shown. +
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In the case where the vertical wire is in contact with a perfectly conducting

ground plane, the wire together with its image should be considered as a

single wire of length 4h. Detailed information on a single wire in free

apace can be found in [12].

The interaction of a horizontal wire with the ground plane is consider-

ably more significant than that of a vertical wire. When the horizontal

wire is close to the ground, it and its image form a two-wire transmission

line, which is a very high-Q resonant structure. Results in terms of SEM

parameters can be found in [13].

For a horizontal slender spheroid over a perfectly conducting ground

immersed in a plane wave shown in Fig. 6, the induced surface current is

approximately given by

2•r g( + 2 H (32)

- ~ r

ground plane ,, h,

, I

""imag

Fig. 6. Cross-sectional view of a horizontal slender prolate spheroid over

a ground p~lane with plane wave illumination. •iis parallel to

'i. the axis of the prolate spheroid.
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where (see Fig. 2)

•, • -( r / h ) 2
l 1 +r/h cos (33)

r - a/l-•2 (34)

SI(•,s) -~ [*(s-(s-s +In (S)i ()[1-e"YAI (35)
i a a)

with A - 2h tan e sin e, and n9 and i respectively given by (19) and (20).
Typical results for the natural frequencies and coupling coefficients for
a unit-step incident wave (EiM 1 V/m) are given in table 7.

TABLE 7. NATURAL FREQUENCIES AND COUPLING COEFFICIENTS FOR A HORIZONTAL
WIRE (OR SLENDER PROLATE SPHEROID) OF LENGTH L AND RADIUS a

ABOVE A GROUND PLANE (2h/L- 0.4, 0 -0*, L/a -20)

SsaL/c na x 103/c
1 -0.08985 + J2.5918 4.675 - JO.9449

2 --- 0.0

3 -0.64293 + J8.0338 1.390 + J1.110

4 0.0

2.1.2.1.2 Right Circular Cylinder

The geometry is shown in Fig. 7, where an E-polarized or H-polarized
wave is normally incident upon an open-ended tubular cylinder of radius a
extending from z --h to z -h. When the electric vector of the incident

wave is parallel to the cylinder axis, the wave is said to be E-polarized.

iII
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z

zah

H HV
E-polarized H-polarizedwave 

- -z.-h wave

Fig. 7. An E-polarized or H-polarized wave'incident on an open-

ended cylindrical tube.

When the magnetic vector of the incident wave is parallel to the cylinder

axis, the wave is H-polarized. The surface current and charge densities

to be presented below are the sums of those on the inner and outer surfaces

of the tube. When ka < 1, the inside of the tube is well below cutoff for

waveguide modes, so that the interior surface current and charge densities

are very small except within a distance d - a from the open ends.

Experiments indicate that the exterior current density on an open-\ended tube differs little from that on a similar tube whose ends are

closed by flat conducting disks [14].

The axial and circumferential components of the induced surface current
density are of the following form [15], in which k is used instead of y and
the dependence of I and p on k should be understood.

E-polarized field

J (0,z) - A(kz) + B(kz)cos 0 + C(kz)cos 24 + D(kz)cos 30 +... (36)

J 0(0,z) - -J[B'(kz)sin 0 + C'(kz)sin 20 + D'(kz)Liin 30 + • . .] (37)
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H-polarized field

J,(Oz) - AH(kz) + B H(kz)cos * + CH(kz)cos 20 + D,(kz)cos 30 +*.. (38)

J 0 - -JBi(kz)sin * + CA(kz)sin A^ + D,'(kz)sin 30 + • . (39)

in which the coefficient functions A(kz), .. . also depend upon ka and kh.

The infinite series implied by (36)- (39) converge rapidly when ka < 1.
When ka -1, the expressions giv'ýn explicitly above are adequate to represent

accurately the surface current density components. When ka < 0.1, only

the terms through sin 0 and cos 0 are required.

As kh '+ •, the coefficient functions A(kz), .. . cease to depend on

kz and approach the constant values for an infinitely long cylinder which

are given in table 8. In what follows, A, . . . denotes the constant value

approached by A(kz), . . . as kh + •.

The induced surface charge density is given for either polarization by

P(O'z)- (J/0 1 zJ + 140)

p(,,z) (/c) -3 ka

a. Cylinder of Finite Length (kh >__ 1)

E-polarization

Convenient approximate expressions for the coefficient functions

A(kz), ... in (36) are as follows

A(kz) - (A + AlcoS kh)e(kz) + Al(cos kz - cos kh) (41)

B(kz) = (B + BlcoS kh)e(kz) + B (cos kz - cos kh) (42)

C(kz) = C e(kz) (43)

D(kz) DRe(kz) (44)
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TABLE 8. FOURIER COEFFICIENTS IN mA/V FOR INFINITELY LONG CYLINDER

E-Polarization: Ei " 1 V/m
z

J )A Bo + C CO 2 + D cos 3 + E cos 4D +J

ka A'Aa+JA1  B'BR+JBI C CR+JCI D RD+JDI E" ER+JEI

0.01 16.83 - J50.59 -5.30-JO.00 0.00 +JO.03 0.00- JO.O0 0.00- J0.O0

0.05 6.86 - J13.60 -5.28-JO.01 0.00+JO.13 0.00-J0.O0 0.O0-J.O0

0.10 5.03 - J7.74 -5.23-JO.04 0.00+JO.26 0.01-J0.O0 0.O0-J.O0

0.50 2.94 - Jl.39 -4.47-J0.74 -0.01+Jl.24 0.16-JO.00 0.00-J0.O1

1.00 2.18 - JO.25 -3.28-Jl.85 -0.14+J2.04 0.58-JO.00 O.00-JO.10

H-Polarization: H1 - 2.65 mA/m

(- AH + BlHcos 0 + CHcos 20 + DiHcos 30 + Eicos 40 +

ka A-AHR +JAUI BH - BHR+ JBHI CH CHR + JCHI DH- DHR + JDHI EH" EHR+ JEHI

0.01 -2.65- j0.O0 0.00 +JO.05 0.00- JO.00 0.00- JO.O0 0.00O-JO.O0

0.05 -2.64- JO.O1 0.00+JO.27 0.00- j0.00 0.00 -jO.00 0.00O- J.O0

0.10 -2.61- JO.02 0.00 +JO.54 0.01- JO.00 0.00- JO.00 0.00- J0.O0

0.50 -2.23 - JO.37 0.48+J2.62 0.33- JO.00 0.00- JO.03 0.00-JO.O0

1.00 -1.64-JO.92 1.27+j3.41 1.33-j0.11 O.O0-j0,21 -0.03-JO.O0
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in which A1 - (1/2)[A(O) - A(r)], B1 - (1/2)[B(O) - B(r)], and

0 < Jz~ (h -d)
e (kz) (45)

S sinfn(h- z )/2d], h-d < Izi <h
|i a

d is a characteristic distance which is usually set equal to a. The

approximate formulas (41) - (44) are valid when kh > 7t/2. The constant

coefficients A, B, CI and DR are tabulated in table 8, whereas A1 and B1

can be found from Figs. 8 and 9.

H-polarization

The component J (0,z) on tubular conductors of finite length differs

little from that on an infinitely long cylinder, except near the open ends

where it rises sharply. The coefficients given in table 8 are good approxi-

mations to the functions A(kz),. - for finite-length cylinders for all

values of jkzj < k(h-d), where d is of the order of a.

b. Electrically Short. Thin Cylinder (kh < 1)

E-polarization

When ka < 0.1, the axial current density Jz(0,z) is accurately approxi-

mated by

jz (q,z) o A(kz) + BR(kz)cos • (46)

The coefficients A and BR at z - 0 are shown in Fig. 10 as functions of kh,

for ka -0.01 and 0.05. A(kz) and BR(kz) are shown in Fig. 11 for ka 0.05

as functions of z/h with kh as the parameter. When kh < irI2, we have

cos kz - cos kh (47)
A(kz) n!A(O) (47) k[7 i cos kh

BR(kz) BRe (kz) (48)

in which A(O) - A+A,, where A and A1 have been defined before.
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- kO&.O1 A lkz)

kh= 1.5w" R

E
-200

4- o--oo57 ' "kz

BR(kz)

-40 '

I I

kao=0.50 
A (kz)

NT

20" kh= 1. AT(kz)

SOR(kZ) -C-lkz)) - -
0 = 0.50 O I

kh=0 1.v5 (z

kz in radians

t Fig. 8. Complex Fourier coefficients of the axial surface current density

SJ (¢,z) - A(kz) + B(kz)cos 4 + C(kz)cos 24 + D(kz)cos 3- on a

Tubular cylinder in an E-polarized field (Ez: 1 V/m).

-B~z
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I I I I

kh: 3.5w, ka 0.01

200- AR(kZ) ,
AR~kz)

100-

- B~R(kZ) -

-100

0 0.5r 7 r 1.5w 27 2.5-w 3v 3.5w

kz

k 3,., ka- 0,01 ,-,NkO
,' ~10 -

(kz)

"E 8R(kZ) ,

-I00 J - 1 i

0 0.5v v 1.5w 2r 2.5v 31r

kz

Fig. 9. Complex Fourier coefficients in J z(,z) A(kz) + B(kz)cos *
for a tubular cylinder in an E-polarized field (E" 1 V/m).
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II -.--- ka= 0.01

100

50-

5 / AR(O) /

6.../ /

/

/
I

I°•I "/

0.05 -

//
oon_ 0. 1 .. .

0 OAT 0.2vr Q3 v" 0.4

Fig. 10. Complex Fourier coefficients of surface density of axial current

!J(0,0) AR(O) + JAI(0) + BR(O)cos * at z-0 on a tubular•

cylinder in an E-polarized field (E.I Vjm).
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I
The circumferential surface current density J (0,z) on an electrically

thin cylinder in given approximately by

J (Oz) . -B:•(kz)sin (49) I

The function BE(kz) is shown plottod as a function of z/h in Fig. 12 with

ka - 0.05 and kh as the parameter. J (4,z) is quite small everywhere

except near the open ends, where it rises steeply to values comparable to
those of the associated axial component, Jz (O,z) U BR(kz)cos *. In effect,

the axial current density approaches an open end on the illuminated half

of the cylinder (900 < 0 < 2700), circulates around the cylinder as a

transverse current with maxima at 0 - 900 and 2700 near the end, and

thon continues as an oppositely directed axial current on the shadowed side.

H-polarization

When ka < 0.1, the circumferential surface current density J (OLz) is

well approximated bylj
J -H + 'JH ika cos 4 (50)

except within distances d - a from the open ends.

The axial current density Jz(0,z) is approximately given by

-Jz(0,z) = -JB•(kz)sin 0 (51)

When ka < 0.1, IBI(kz)l << LAH(kz)i, so that the axial current density is

very small on thin cylinders excited by an H-polarized field.

c. Comparison with Measurements

Experimental resvlts reported in [15,16] show excellent agreement

with the theoretical results described above. Some typical results are

shown in Fig. 13 for a tube with ka-0.05 and kh-0.175w. In Fig. 14

are shown the scale-model measurements of the induced current density versus

frequency on a right circular cylinder of length 47m and radius 2m [17].
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Fig. 12. Fourier coefficient B•.(kz) of surface density of transverse

current J (0,z) :ý I B(kz)sin• - on, a tubular cylinder in an

E-polari--ed fiLeld (Ez= 1 V/M).
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Fig. 14. Measured current density at the center front and rear of a

right circular cylinder with length 47m and radius 2m.I
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2.1.2.1.3 Crossed Slender Spheroids or Cylinders

In the study of EMP interaction with aircraft-like configurations it
!! is found that the interaction among the elements (wings, fuselage, etc.)

has a significant effect on the natural frequencies of the entire structure.

This effect is clearly seen in the case of two perpendicular crossed slender

spheroids or cylinders. Fig. 15 illustrates the intersecting spheroid
configuration,.!

a. Surface Current Density on Crossed Slender Structures
The current density induced on the surface of an intersecting slender

spheroid configuration can be expressed efficiently and simply in the

SEM formulation. For a given element or arm the surface current density

may be approximated by [18]

J(Zrs) I (H's) ll+(l - ya cos *) (52)

zI

aa

S% x.Jýw

I -J

J-z'- i0

Fig. 15. Parameters of intersecting spheroids.
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where I(z,s) is the total axial current and, as before, r(z) a/l - (z/h) 2

(see Fig. 2).

In order to express the axial current on the structure it is convenient

to use 1 x3 matrices for the currents and the current modes, namely

Lf (z~s) 1 , i~ ) (53

-S- s *~~(~a (s- *)] a a) (53)~

Here z, z' and x are element coordinates defined in Fig. 15, n is the

coupling coefficient defined by (19), and the elements of the current mode

matrix are

f sin k f
a* a~ sin kk a f

a sin ka ('a- z')Sa W') C ca snkX(54)
a a

iW - 6w sin k C( w-x

a a sin k k
a w

where k - Re(-Jya) and Cf, etc. are current mode amplitudes. It may be

noted that only one Xw element current is considered, since the currents

on the Zw elements can be separated into symmetric and antisymmetrir parts

with respect to the k. and Zf elements (Fig. 16). The antisymmetric part

does not couple to the Xa and X elements and can therefore be obtained

a ffrom the analysis of an isolated spheroid. For the symmetric part (Zw
element currents being antiparallel), however, coupling does occur and

the foregoing expressions apply specifically. For a more deciled

discussion of the component separation see [19].
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s e symmetry
pians plane

(a) symmetric part: top view (b) antisymmetric part:top view

Fig. 16. Decomposition of current into symmetric and antisymmetric parts.

Values foz the natural frequencies, coupling coefficients and current

ode amplitudes are given in tables 9 and 10 for aircraft-like parameters

and topside incidence in which E is parallel to the £a and kf elements

and t is perpendicular to the plane of Fig. 15. An extensive scudy of

the SEM parameters as a function of the system configuration can be
!"I found i.n [19J.

The accuracy of (53) should be within 10 to 20%, while (52) should be

much more accurate, with less than 10% error.
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b. Surface Charge Density on Crossed Slender Structures

From (53) one obtains, via the continuity equation, the charge densities

1w(z's) f (Z)

Pf(ZS) _____s___f l - /£f)] ]
2faf Lot - fs

Pa ')u " (s- _S a a(. (55)[ PW(x,s) jP
with the p a given by

a /i- e2(z,/2£)2ca
k cos[k w(l - Z/Aw)] Ca

p [- (56) (a -ai n k/

a /1-e(z~/ka)2  a a

a ~ k acos[k a Z (1 - '/1 a)) Ca

2 W)(57)

It is expected that (55) should be about as accurate as the corre-

Ssponding current expression (53), i.e., 10-20% error may occur.

Sc. Intersecting Electrically Thick Cylinders

No analytical or numerical determinations of the surface currents and

charges on intersecting electrically thick cylinders are available. However,

extensive measulements of these quantities have been performed [20]. The
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cases studied include three lengths of the horizontal cylinder and two

locations along the vertical tube. Graphs of both the axial and transverse

components of current density and of the charge density are available for

ka- 1. The axial standing-wave patterns on the illuminated (p 1800)

and shadowed (• - 00) sides are clearly shown in Fig. 17 for kZ w.

khI - 2.5iT and for kk - 1.5ff, kh1 - 2n. For purposes of comparison,the
distribution along an isolated vertical cylinder is 4iso shown.

The following general conclusions can be made regarding the surface

current and charge densities on intersecting cylinders with ka > 1:

(a) The distributions of current and charge densities are much less!

sensitive to changes in the lengths of the cylinders when they

are electrically thick than when electrically thin.

(b) The distribution of the charge density on an electrically thick

cylinder is more sensitive to the nature of the incident field

and the presence, dimensions, and location of an intersecting

cylinder than is the distribution of current.

(c) The charge density on the vertical member when excited by an

incident E-polarized field (Fig. 7) has significantly different

dictributions when the incident field is not plane, when the

horizontal member is absent, its location is changed, or when

the arm lengths are varied. The current density is much less

affected.

(d) The distribution of the charge density on the horizontal cylinder

in an H-polarized field (Fig. 7) is insensitive to the location

of its intersection with the vertical member of the cross so

long as the arms are equal in length. On the other hand, the

amplitude of the axial standing-wave pattern as a function of

Sis sensitive to the length of the arms.

(e) As on the single cylinder, the axial current density on the

vertical cylinder is substantially a superposition of forced

and resonant components. The changes from the distribution

along the single tube when an intersecting cylinder is piesent

at different locations and with different arm lengths are due
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F Fig. 17. Measnred surface charge density on crossed cylinders with kh -3.51T,

ka- 1 for two location- of the junction and with no cross for

normally (topside incidence) incident field, E'izEi• (Ipl in

arbitrary units).
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primarily to shifts in the relative phases of the forced and
resonant components.

In genezal, the distributions jf current and charge on the surface of

intersecting electrically thick cylinders are quite similar to those on
each of the individual cylinders alone in the same field. The relative
amplitudes of the standing waves on the illuminated and shadowed sides of

the vertical cylinder may differ considerably, but the standing-wave pattLrns

are significantly changed only quite near the junction region. Thus, a

know~ledge of the distributions of current and charge density on single

cylinders is of great value in the understanding and interpretation of

these quantities on intersecting cylinders and in the rough approximation

of their actual values.

d. Ground Plane Effects,

SGeneral observations regarding thin crossed cylinders or spheroids

close to a ground plane are the same as those for an isolated cylinder or

spheroid (see Sec. 2.1.2.1.1d). The surface current density is related to

the axial current as given by (32) and the axial current may be expressed

as given in (53), but the SEM parameters depend upon the height of the

cylinders. For a typical aircraft-like configuration, the SEM parametees

for the first 4 modes are given in table 11. A detailed study of the ground

plane effects on the SEM parameters may be found in [131.

2.1.2.1.4 Aircraft Models
I

Complex structures such as aircraft are difficult to model for purposes

of analytical and numerical studies. As of now, there exist several types

of simplified models, the most notable of which are (a) the simple stick

model [21], (b) the body-of-revolution model [22], (c) the surface-patch

model [23], and (d) the wire-grid model [24]. Information on the computer'

codes for these models and other models can be found in [25]. The wire-

grid model, although adequate for radar cross-section calculation, has

many deficiencies in EMP interaction applications [26]. The surface-patch

model, although much more accurate in na,.ure, requires an inordinate amount
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of computer time for any EW{ time-domain data and, as of now, numerical

data based on this model are lacking. Therefore, the data presented in I
this section are restricted to the simple stick model and the body-of-

revolution model.

11smpe"stick models are very uso-ful for estimating tbe natural

freqences nd ntural axial current modes of an aircraft [21]. In a

1) - I W + A sinh yx +B cosh yx(

ar, ossumed on each of the elements or sticks (Fig. 18), where x denotes

a distance coordinate alod.e a given element and A and B are undetermined

coefficisents. The quantity d denotes the current induced on a wire by

an incident plane wave whose magnetic vector is perpendicular to the wire

and is given by

;~ ~ ~ ~ ~ ~ ~ 4r sipl Cosc aoecret ftefr

I ind(X) (x sinh eYX + B (59)
o a

in which Ps a = 2one (stick length)s(stick radius)], w iý the propagation

vector of the unciient field, Z dnis the iLurinsic impedance of free space,

Fig. 18. A "simple" stick model.
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E is the incident electric field strength, and 0 is the angle between the

propagation vector of the incident wave and the negative unit vector

along the stick.

Enforcing appropriate end and junction conditions on the various

stick currents leads to a system of linear equations for the unknown

currcnt coefficients A,D, etc. The resulting equations may be readily

solved to yield the resonance frequencies and nntural modes of the simple

stick model. The damping constants of the natural modes are found by

calculating the radiated power and the time-averaged stored energy of

each of the natural modes (see Sec. 1.3.3.3).

This type of model has been used to calculate the first several

natural frequencies and natural modes for the B-l, E-4, and EC-135

aircraft for symmetric excitation. The natural modes for the EC-135

model are shown in Fig. 19. The natural frequencies for all three air-

craft are shown in the complex s-plane in Fig. 20.

b. Stick Models and Body-of-Revolution Models

The body-of-revolution model uses axial sections of spheroids and

circular cylinders. A stick (intersecting cylinders) model of the B-1

aircraft is shown in Fig. 21a, while a body-of-revolution model of an

EC-135 aircraft is given in Fig. 21b. I
Integral-equation formulations and numerical techniques are generally

required for these models. The numerical solutions based on these models

must be augmented by the addition of an appropriate magnetostatic term in

order to yield accurate solutions for induced surface current density

[23,27]. Figs. 22 -34 show some of the results obtained with these

tecl-niques [18].

In Figs. 22- 24 are presented curves of the axial surface current

density on models of the B-1 aircraft as a function of frequency for three

cases: (a) stick model (nnmerica' results), (b) a scale stick model

(experimental results), and (c) a body-of-revolution model (numerical

results).
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404

6.4 MHz 7.8 MHz

Fig. 19. EC-135 natural modes. The dashed lines represent the current

distribution on the aircraft segments a.t resonance, while the

arrows indicate directions of current flow.

.0T 7MHz
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0 ~ 30

A=EC-135

]~ig. -6 - 2 . M~ciI0z(

Fig.20.Aircraft natural frequencies of B-1, E-~4 and EC-135.
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Q00 2.0 4.0 6.0 8.0 10.0 92.0 14.0 16.0 18.0 2LmO
frequency (MHz)

Fig. 23. Current density on the topside of the fuselage 22.5 meters from

the nose of the B-I with wings forward. -- scaled stick model
experimental data; -.- stick model numerical data; .... body-

of revolution code.

40

20- Ii
4-1

2 .. .....

".6 L. . . ...

O0 2Z0 40 &.0 8D IGO a•0 14.0 IG60 1a 20
frequency (MHz)

Fig. 24. Current density on the bottom of the fuselage 22.5 meters from

the nose of the B-i with wings forward. - scaled stick model
experimental data; --- stick model numerical data; .... body-of-

revolution code.
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Fig. 0. 25.0 rM;oOi:enaa ~~~ 250 3 QO 3 5 -0 4 0f motors
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8
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A .8
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Fig.26.Comparison of B-i scale model measurements with numerical results

* for topside illumination and wings swept at f-l1".16 MiHz.

experimeatal data; -.- stick mkodel; ... body-of-re'volution model.I
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frequency (MHz)

Fig. 27. Current density on the topside of the EC-135 fuselage 22.5

meters from the nose.

10 body-of-revolution model

1/447 scale modol
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5 10"2

HI
frequency (Mtz)

Fig. 28. Current density on the topside of the EC-135 fuselage 5.0 meters

from the nose.
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meters from the nose.
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Fig. 30. Charge density on the noce of the EC-135 aircraft.
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Fig. 32. Current density on the fuselage of EC-135. --, at the top of air-

craft with topside i II fuselage; - at the bottom of aircraft

with topside • fuselage (stick model numerical data).
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Fig. 33. Charge density on the vertical stabilizer section at the fuselage--

vertical stabilizer junction of EC-135 (stick model numerical data).
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Fig. 34. Charge density on the fuselage of EC-135

K. (stick model numerical data).
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In Figs. 25 and 26 are displayad fuselage suirface current densities

for the B-I as functions of position along the fuselage for two different

frequencies. Both the wings-forward and wings-swept configurations are

shown. The measured data were obtained using a scale model.
Experimental data from scale-model measurements and numerical results

from the body-of-revolution model of the EC-135 aircraft are compared in

Fig&. 27- 30, in which are shown plots of the surface current density and

surface charge density at various locations as functions of frequency.

Further theoretical (numerical) results are presented in Figs. 31 -34.

c. Thick Cylinder and Intersecting Flat Plate

Some experimental data are available for a more complicated model of

an aircraft, an intersecting thick cylinder and flat plate [281. The

geometry is shown in Fig. 35. No analytical or numerical data are as

yet available.

ground plne

Fig. 35. Diagram of flat plate crossed with an electrically thick cylinder.
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d. Ground-Plane Effects

The pregence of a conducting ground plane beneath an aircraft causes

the incident field to be reflected back onto the aircraft, with a phase

shift oZ approximately l8O* (for a highly conducting ground) for the

component of the electric field parallel to the ground (and thus to the

the total field illuminating the aircraft has less low-frequency spectral

content than the incident EMP.

An additional effect of the grudis teformation of a hg-

transmission-line-like structure comprising the aircraft and its image in

the ground plane. These structures resonate at about the same frequencies

as the isolate". aircraft but with a higher Q.

Some of the results for the induced currents and charges on an aircraft

iui the ground-alert configuration are summarized below [13].

(a) The presence of the ground plane shifts the resonance frequencies

by only a few percent, the lower-frequency resonances being

shifted less than the higher-frequency resonances.

~1 (b The resonant Q's are greatly increased when the ground plane

is present.I

(c For the same incident pulse, the peak current densities observed

in the ground-alert configuration are comparable to those occurring

in the in-flight configuration.

(d) The presence of the ground plane reverses the importance of the

first and second resonances in some cases.

(e) The dc (late-time) component of the induced surface charge

density is nonzero for the in-flight configuration and zero forI

the ground-alert configuration for _Eý parallel to the ground plane.

(f) For tha same incident pulse, the peak charge densities observed

in the grounl-alert configuration are comparable to those occurring

in the in-flight configuration, except near the nose and the tip341
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of the vertical stabilizer. At those locations, the ground-alert

peak charge density is about one-third the in-flight peak charge

density for ti parallel to the ground plane.

2.1.2.1.5 Modeling Accuracy

a. Model Selection

The features of the structure that should be included in the model

depend upon their relative size and the accuracy desired. For example,I

should the engine nacelles be included in the model? If the current and/or

charge is needed in the vicinity of the nacelle it is obvious that the

nacelle is needed in the model. At distances from a surface protrusion

(such as an engine nacelle) large in comparison with the dimensions of the

protrusion, the effect of its presence may be neglected.

Fig. 36 is a crossed-wire model for the EC-135 aircraft which may be

used to advantage in determining the interaction of the aircraft with the

EMP because of the physical simplicity of the model.

(Y A 14.6m)

forward fuseloge

wing wing (22.85in,O)

(-22.85rmn0)

- 3.6m

haft fuselage

(O,-1.1m)

Fig. 36. Crossed-wire model of the EC-135 aircraft.
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A comparison of time-domain peak currents Ipeak and times tc of the

fiz".t zero crossing derived from the crossea-wire model and the body-of-

re.oluLion m0del are shown in tale 12. Th.t comparisons are quite favorable

iu view of the difreranco in complexity of the models. Although the current

peak values compare quite well, only the currents on the forward fuselage

and at the wiag-fuselage junction have approximately the same time histories.

TABLE 12. COMPARISON OF RESULTS FROM THE CROSSED-WIRE MODEL WITH THE

BODY-Oý-REVOLUTION MODEL FOR THE EC-135 AND A TOPSIDE

INCIDENT UNIT-STEP PULSE (See Fig. 36 for tha

definition of x,y coordinates)

Crossed- Body-of-RevolutionQuantity Location Wire Model Model

Resonant Freq. ---- 2.4 MHz 2.6 MHz

:! Ieak0.16 A 0.13 A

Y y 0-
tc ,,tc 204 ns 206 naCi

Ipeak 0.108 A 0.096 A

t Y +138 ns 118 ns

Ipeak (2nd peak) 0.064 A 0•0709 A

tx + 214 ns 207 ns

^peaI oE nose 12.9 27.6

(t-*)! (oE 9.9 19.8

" peak 6.5 27.0

p~t-~w)wing tip
P2.6 6.1

/(e'c E verticel 21.4 26.40peak stabilizer

p (t--()/CEi) tip 12.9 10.2
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Also included in table 12 are comparisons of the charge densities.

These are not as favorable as the current comparisons, since the charge

densities are cotapared at the ends of the elements where the crossed-wire

model has flat end-faces and the body-of-revolution model has ellipsoidal

eud-faces. The points selected for comparison represent points at which

the charge density is largest. In table 12, ppeak is the peak value of

the charge density and p(t4-) is the asymptotic value of the charge density.

b. Accuracy of the Results

It is difficult to quote an accuracy that can be achieved through

theoretical analysis. Generally, when the physical structure is simple,

errors of less than a few percent can be achieved in predicting the

surface fields. However, if the structure is very complex, such as an

aircraft, then error of a factor of two is probably the best that can be

presently achieved.

2.1.2.2 High Fregue.ncies

The transitznt surface current and charge densities are calculated in

this section for certain simple-shaped geometries to demonstrate the

utility and accuracy of the high-frequency expressions given in Sec. 1.4.3.

The expressions can be used in several ways to obtain the transient response

of an object. For example, they can be used in conjunction with intermediate-

frequency spectral components to obtain the time-domain response by a

numerical inversion, such as the FFT. Alternatively, the high-frequency

solutiors can be analytically transformed to the time domain and then

smoothly joined to the intermediate-time results which may be obtained,

for example, by the SEM or the solution of a time-domain integral equation.

2.1.2.2.1 Wedges

According to Sec. 1.4.3 the induced transient surface current and

charge densities on the horizontal face of a wedge (Fig. 37) can be

written as

•(x,t) 2 x2 H'i(xt)u(ir -') + I(x,t)

p(xt) 2'.T) E(x,t)u(7r - + pd(x,t) (
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S~Fig. 37. Plane wave normally incident on a perfectly-conducting wedge.

[ in which u(r-0') is the unit-step function. The first term on the ight
hand side is Just the geometrical optics contribution d i e

In the TE case where H is parallel to the z-axis (or edge) and given

by

one has (cf. Sec. 1.4.3.5.2)

-sx/c
jd (x,s) = Dh(Di, ( d' Xu , s) e (62)

xs h

for the diffracted current density in the s-domain, and

d 1.d 1. , dp (T) T + ( •+- (T-1)J (T)
c x c x

(63)
-- jd(T')dT', T>1•-Jc 1 x " -i

for the charge density in the t-domain, where T - ct/x. Eq.(63) shows that

! for very early times after the arrival of the diffracted wavefront (t x/c,

i.e., T=l)
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d id
pd(T) - X (T) (64)

The edge diffraction coefficient Dh ia (62) is first Introduced in

(210) of Sec. 1.4.3.5.2; its explicit expressions for the half-plane and

the ordinary wedge formed by two intersecting plane surfaces can be found

in [29A.

In the TM case the incident electric field E' is given by (61) with

replaced by (/Zo. Since I - 0 everywhere, one has

p(x,t) H 0
(65)

j d - dx(x't)
Z

dEq.( 6 5) is obtained from E (x,t) via Maxwell's equations and an integrationz
with respect to time.

Calculations of the surface current and charge densities on the top

face of a right-angle wedge and half-plane are presented in Figs. 38 and 39

for both TE and TM polarizations. The txansient responses to a step-function

pulse for various angles of incidence *' are exhibited. The GTD (Geometriac.al

Theory of Diffraction) curves in Fig. 38e are calculated using the edge

diffraLtion coefficients given by Keller [30]; these diffraction coeffi-

cients are not valid at the shadow and reflection boundaries, where they

becom't infinite. The UTD (Uniform Theory of Diffraction) curves are

calculated from the uniform diffraction coefficients given in [29]. The

exact curves are calculated from exact, closed-form time-domain solutions

given in [31-331.

In Fig. 38a it is apparent that numerical results based on the GTD

are valid only for very early times after the arrival of the diffracted

wavefront at ct/x - 1, whereas those bEsed on the UTID are seen to be in

remarkable agreement with exact calculations for intermediate and even for

late times; this is further confirmed by comparing the UTD curves in Fig. 38b

with the exact curves in Fig. 38c. The numerical results for the half-plane

shown in Fig. 39 reveal that there is essentially no difference between the

UTD and exact values.
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When the top face is illuminated, the simple response predicted by

geometrical optics for the interval - cos ý' < T < 1 is evident. The

response curves for the right-angle wedge (n =3/2) and half-plane (n =2)

are quite similar. For late times the response for the TE case approaches

2/n, where n7t is the exterior angle of the wedge. Thus the response at

intermediate and late times of the right-angle wedge is somewhat larger

than that of the half plane.

Additional numerical results for the transient fields diffracted by

perfectly conducting wedges illuminated by step-function plane waves can

be found in [33- 35]. It should be mentioned that an interesting closed-

form result for the diffraction of the pulsed field from an electric (or

magnetic) dipole in the presence of a perfectly conducting wedge has

recently been obtained [36].

2.1.2.2.2 Cylinders

The transient current and charge densities induced on a perfectly

conducting circular cylinder can be obtained analytically by inverse-

transforming the high-frequency expressions given in Sec. 1.4.3.5.4 on

the shadow side (n/!2 < < 3,a/2) of the cylinder. The corresponding high-

W ~frequency expressions on the illuminated side (0 < 101f < irI2) can be

obtained from the Luneberg-Kline series [37,38] and can easily be trans-

formed to the time domain. The representation breaks down close to the

shadow boundary.

Time-domain data for the surface current on a circular cylinder are

given in Fig. 40 for TE and TM step-function incident plane waves. In the

shadow region the early-time response for the TM case is much weaker than

that for the TE case, which is expected because of the greater attenuation

experienced by the TM surface ray modes. The curves in Fig. 40a appear to

be approaching the late-time limit of unity, and sio it is believed that

they are resonably accurate for intermediate times. It should be emphasized

4 that the results in Fig. 40 were calculated from an exact inversion of the

high-frequency solution.
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The transient response in the shadow region begins at ct/a - "ir/2,

and in Fig. 40 a second rise in the response at 31r/2 - 0 is evident for the
950 and 135* curves. This is due to the arrival of the wavefront from

the shadow boundary at 37/ 2 .

The early-time response curves in the illuminated region are seen to

be useful only for rel~tively short times compared with the curves for
the shadow region. This may be due to the fact that the high-frequency
solution on the illuminated side, based on the Luneberg-Kline series, is

not as accurate as that on the shadow side. The high-frequency solution

on the shadow side can be used right up to the shadow boundary, whereas

for the illuminated side it breaks down quickly as the bouttdary is

approached. Perhaps this difficulty could be overcome by using solutions

valid for the transition regions, which join smoothly with those ior the

shadow and illuminated regions, such as those described in '40).

As in the case of the wedge, there is no surface charge density in

the TM case. In the TE case the surface charge density in the time domain

can be found from the inversion of the expression given in Sec. 1.4.3.5.4.

Additional numerical results for the transient surface currents on circular

cylinders are given in [38].

2.1.2.2.3 Aircraft ModelA Te basic aircraft n&del that has been used extensively for GTD

calculations is shown in Fig. 41, where i.he infinitely lcng, perfectly

conducting elliptic cylinder models the fuselage while the flat, perfectly

conducting plates model the aircraft wings. Also in Fig, 41 are shown the

high-frequency surface current and charge densities for various incidence

angles 0' of a TE incident plane wave [41]. The dimensions chosen

(a - b - 3.5 meters) correspond to those of a 747 aircraft. The corre-

sponding results for a TM-type incident wave are in general smaller.

2.1.2.3 Large Appendage

In this section data are presented for the effects of electrically

large appendages on the induced currents and charges on aircraft, missiles
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and ground-based communications systems. The appendages considered include j
long trailing-wire antennas on aircraft, exhaust plumes associated with

missiles in powered flight, and wires/cables external to ground faciltties.

2.1.2.3.1 Trailing-Wire Aircraft Antennas

Two different VLF/LF transmitting antennas are shown in Fig. 42. These

antennas operate in the frequency range 17- 60 kHz, and are tuned by varying

the wire lengths. The longer of the two wires in the counterpoise antenna

or the single trailing wire can extend as much as 8.5 km behind the aircraft.

Some data will be given in this section regarding the effect of the presence

of this long wire on the currents and charges induced on the aircraft itself

when the whole system is illuminated by an EMP, especially in the frequency

range below the first resonance of the aircraft.

iH

0.4km < L, < 1.4km, 2.4km< L? < 8.4km

(b)
L

2.5kM < L < 8.5 km

Fig. 42. (a) Dual-wire (counterpoise) and (b) trailing wire VLF/LF antennas.
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A simplified model encompassing the salient features of the problem

is shown in Fig. 43. The aircraft is modeled by a simple stick model

(see Sec. 2.1.2.1.4a). The trailing wire is attached to the aircraft to

the bottom of the fuselage under the wings. The current Iw injected from

the long wire into the aircraft is given by [42]

1-F(L) + sec(k. 3 ) - sec(kL1 )

47rE'(w) 1+F(L) + J[tan(k. 1 ) + 2tan(k£2 ) + tan(ki 3 )] (0 o (66)
lw JkZ 1 + F2  1 I

1-F 2 (L) a J[tan(kLI) + 2tan(k' 2 ) + tan(kY3 )]

where Eo(w) is the spectrum of the incident EBI of the form of the difference

of two exponentials as given by (2), i.e.,

Eo'(w) Eo f r+ (67)

with Tf - 0.25 Vs, Tr = 2 ns, and the function F(L) is given by

F() n[11 -27ri/{zJn(rk 2 a2) n[kL+ (k2 L2 + r_2½+ 3Tri/21] I~ (8
F(L) = £n{l- 2rj/[2 Zn(rka) + 3rj/2]} (68)

131

SIiL 20

Fig. 43. Stick-model aircraft with attached trailing-wire antenna and

topside incidence (k 1 13m, k2 ' 20m, k3 "34m, L-8.473 kin,

a -2 mm).
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with Va -2 Zn(rka) - Ji, and r - 1.81072.... 1
The currents induced on the stick-model aircraft itself are

47rE'

Ii~i Z~2 0j f (C w(1 ) (69)
I~(~) -z Q jk 1(2 1 (70

oa

-47rE'
0

o f( (k E - 3) (71)13 (3) Zoa jk 3 3 Iwg33

where ia - 2 Ln(L/a), with L being the length of the trailing wire and a
its radius, and

fQ(•) -cos (kC) - 1 + sin(k) {tan(kn ) + sec(kZn)(sec(kY3) - sec 1(kPI)] (72) '

x [tan(kL1 ) + 2tan(ki 2 ) +tan(kZ 3)] }, n 1,3 (72)

g(,) =sin(k&)sec(kYn)/[tan(k£1) + 2tan(k.£2) +tan(k 3 )], n-1,2,3, (73)

h(C) - sin(ký)sec(kk3 )[sec(kY. 3 )-sec(k 1 )]/[tan(kZl)+2tan(k£ 2 )+tan(kk 3 )] (74)

The coordinates e l 2 and ý3 are shown in Fig. 43. The expressions (66) -

(74) have been derivcd by neglectii.g the damping of the aircraft resonances.I! This effect can be included by expanding each of the currents in Mittag-

Leffler series and then introducing the damping for each resonance (cf.

Sec. 2.1.2.1.4a).

The frequency variation of the total induced current at two points on I
the stick-model aircraft is shown in Figs. 44 and 45. The results shown

are for a double exponential EMP with topside incidence (Fig. 43) and
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Fig. 44, Spectral density of the total induced fuselage current at theI
uddpoint between the nose and the wing root.
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6pectrum given by (67). Results are shown for frequencies below one MHz

only, since the effect of the trailing wire on the aircraft currents is

not so important in the resonance region of the aircraft [42]. It should

be emphasized that the topside-incidence case does not give the maximum

effect of the trailing wire on the induced currents and charges on theK aircraft. The maximum effect seems to occur when the direction of

incidence is nearly parallel to the wire and toward the aircraft.

2.1.2.3.2 Exhaust Plumes

The ionized exhaust gases ejected from a missile in powered flight

behave like a conductive extension of the missile. The presence of this

exhaust plume zan affect the response nf the missile to EMP excitation

in a t least two ways: (a) the conducting plume may significantly affect

the surface currents induced on the missile body, and (b) the induced

currents in the plume itself may couple directly to the interior of the

missile through the nozzle assembly. Only the first effect will be

discussed here, as the second i not at all well understood at present.

a. Missile-Plume Models

"IThe simplest model for a missile-plume configuration is a thir

cylinder of constant rodiuE a and axicily varying electri.cal properties.

The geometry for such a model is shown in Fig. 46 The missile itself

extends from z -0 to z - £m; the plume extends below the missile to

z = X +L . The total axial current I(z) at any nclnt z, where
m p.- ]0 < z < X m +Xpcan be determined fro- the solution o.' an integral

equation [43- 46]. The limitations of this model and approach are that

(a) only the axial current can be calculated; (b) it is necessary that

ý£m +Z £p)/a >> 1; (c) the junction between the missile and the plume is

assumed to be a simple el.ectrical connection between two objects having

different electrical conductivities. Recently, some limited results have

been presented for a model in which the missile is treated as a conducting

rod of conductivity a and the plume is modeled as a homogeneous lossy
em

dielectric body of revolution attached to the conducting rod [44]. However,

we shall here restrict attention to the wore completely developed thin-

eyiinder model for the missile and plume.
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Fig. 46. The thin-cylinder model for a missile-plume configuration.

b. Electrical Plume Parameters

At low altitude a plume is usually modeled as a thin cylinder of

radius a described by an equivalent internal impedance per unit length

zg(Z) " j(Z)/I(z) (75)

in which 1(z) is the axial current at position z and •z(Z) is the average

total axial electric field at the plume surface

Ez(Z) -- •- (a,4•,z)do (76)

The principal contribution to the conductivity of the plume is the

motion of free electrons under the influence of an applied field. The
effective permittivity and conductivity of the plume in the cold-plasma

model are
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£ 2

ep 02 2

2= ne/21(me o) (78)

PY Cep o eo2

where ne is the free-electron density in the plume, and e and me are
respectively the electron charge and mass. In the frequency range of

interest for EMP studies, w << v and u <<wp, so that

a r•oW/V (79)
°ep o

is a good approximation fov the plume conductivity. Note that this approx-

I imate expression is independent of w. In general, both v and w depend onP
the axial and radial spatial coordinates of the plume.

S~The equivalent internal impedance Zi per unit length of the plume is

calculated from a knowledge of, or assumptions concerning, the functional
dependence of is and v on position in the plume. Results for three

distinct plume models will be presented here. The simplest plume model

is the homogeneous-plume model which is based on the assumption that the

plume conductivity is constant everywhere within the p tume. For this model

the equivalent internal impedance Z ' per unit length is

zd(nd) o a on p n (homogeneous plume)(

ep

Another plume model is the so-called tapered-plume model [45,46] which

utilizes an assumed exponential variation for the plume conductivity,

namely
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ep ep(0)ea > z > m)

in which a is a constant. The internal impedance Zj per unit length is

identical to that given in (80) with aep replaced by (81). The third model

is the inhomogeneous-plume model whose plume conductivity a is allowed toep
vary as a function of radius and of axial position. The electron density

n and the collision frequency v may be calculated by the Aero Chem Low
e j

Altitude Plume Program (LAPP) [47] and then used to determine aep using

(77), but this procedure will cause considerable uncertainty in the results.

Smith, et al. [43] have considered two models of the inhomogeneous plume

of finite length. In their first model, the conductivity and the plume radius

are functions of axial position, and the conductivity at a given value of z

is the maximum value predicted by the LAPP code at that axial position. The

iadius of the plume rp is taken to be the radius at which this maximum
pJ

conductivity occurs. In their second model, the plume radius rp is assumed

to be constant and equal to the missile radius, while the conductivity at

each z is the maximum value predicted by the LAPP code at that z-value.

For each of these two models, the equivalent internal impedance Z' per unit

length of the plume is of the form

Zi'(z) W L +W(82

2prp(z) (i+J) 2 aep(Z) (82)

In summary, the various plume models use different approaches to the calcu-

lation of Z1(z); but in each case the plume is modeled as a thin cylinder

of radius a. Only the form of the axial variation in ZE(z) differs among

the models.

Fig. 47a shows frequency-domain results for a homogeneous-plume model

for various conductivity values, while Fig. 47b exhibits similar data for

a different angle of incidence [44]. In the case of broadside incidence,

the presence of the plume tends to suppress the missile current, while atti lnear grazing incidence, the plume tends to enhance the missile current.
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Fig. 47b. Current magnitude on a thin-cylinder model of 3-meter missile

(6.4 cm radius) with 6-meter trailing plume (0i 300, f-50 MHz);

homogeneous-plume model; a -, Ei 1 volt.
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Fig. 48a shows the dependence of the missile current on wavelength for the

homogeneous-plume model, while Fig. 48b shows this same dependence for an

inhomogeneous plume whose conductivity profile is riven in [43]. The unit-
step transient response for a homogeneous plume and a tapered plume are

shown respectively in Figs. 49a and 49b [48].

c. Validity of Approximations

Almost all the plume calculations presently employ the cold-plasma

approximation. A plasma is considered to be "cold" when

vt . electron thermal velocity << 1 (83)
vp P EM wave phase velocity

For EMP problems it can be shown that

- 5.2 x 0- e (84)

Fig. 50 presents curves of the ratio vt/vp versus frequenry for

ne 10 m, V- 109sec-, and a temperature ranging from 500*K to 4000@K.

From these curves one can find the frequency range in which the cold-plasma

approximation is not violated.

2.1.2.3.3 External Wires and Cables

Long, thin conductors outside the first layer uf shielding often occur

in ground-based systems. Examples of such conductors are power lines,

communication cables, metal piping, and similar appendages for station-

keeping and communication. These conductors provide paths along which

EMP-induced currents and charges may propagate toward the facility. Of

primary interest is the Th~venin or Norton equivalent source representing

the voltage or current delivered to the facility end of the conductor.

*1 There are two categories of external conductors: aio,,e-ground conduc- I
tors and those at or below the surface. The above-ground conductors are

exposed to the incident EMP for the short time that elapses before the

reflection from the ground arrives. Buried conductors are exposed only
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to that part of the EMP that propagates into the soil. Currents and charges

on above-ground conductors are also distinguished by a velocity of propaga-

tion close to the speed of light, while their propagation on buried conductors

is much slower and accompanied by appreciable attenuation. Because of these

differences in propagation characteristics, an above-ground conductor is

more sensitive to the direction of incidence of the •P than a buried con-

ductor.

a. Wire Above Ground

a.1 Early-Time Response

The response of an above-ground conductor before the arrival of ground

reflection is the same as the response of an isolated conductor in space

(without a ground plane). The current induced on an infinitely long conductor

of radius a in free space is [49]
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• , -Jkz cos

4Ei eik O
I(z,s) kZ ( (85)

0H 0 -"(2) (k'a)

where k -w/c-- s/c, k'-k sin 8, H (2) is the Hankel function of the secondo 0
kind and order zero, E is the magnitude of the incident electric field, 0

is the angle between the axis of the wire and the propagation vector of

the incident wave, and the magnetic field of the incident wave is perpen-

dicular to the wire. A plot of the current waveform induced by a step-

function incident .wave is shown in Fig. 51.

a.2 Complete Response for Perfectly Conducting Ground

The current induced on an infinitely long wire of radius a at a

height h above a perfectly conducting ground plane by a plane wave whose

magnetic vector is perpendicular to the axis of the wire is [50]

I(z's) - 4E' (1 -j2k'h sin ). -Jkz cos 0 (86)

kIZ 0H()(' -H ( 2) (k'h) a)
0 0 0

100 Hz ) - 4 -..
.. 0 W

50"

2

00 200 40 600 8

(ct+a sin8)/(a sin8)
Fig. 51, Current induced on an infinite conductor by a step-function

incident wave (transverse magnetic field).
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where * is the angle of rotation from the ground plane to the plane defined

by the incident propagation vector and wire axis, and J is the Bessel

function of the first kind and order zero. The current induced by a step-

function incident wave is shown in Fig. 52 for vertical polarization (0--90).

Also shown as a dashed curve is the transmission-line solution.

transmission-line
40- approximation

exact solution (86)

30-

H/ h 1 00

/h

20o- aIIo

N It

I 2 3 4 5
ctFth sinO)

Fig. 52. Current induced on an infinite conductor over a perfectly conducting

ground plane by a step-function incident wave (transverse magnetic

field).
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a.3 Late-Time Response (Imperfect Ground)

An approximation to the late-time current or voltage induced on a

long, thin wire parallel to the surface of the earth has been obtained

from transmission-line theory [51,521. Although this apnroach is valid

only when the wire height is small compared to a wavelength (kh << 1), the

method gives surprisingly good results even when this condition is not

satisfied- (e.g., when kh z 1).

The current I(z,s) and voltage V(z,s)* at any point z (zI < z < z 2 )

along the line is given by

I(z,s) - [K1 +P(z)]e-YZ + [K 2 +Q(z)]eYZ

(87)
V(z's) - Zc{[El +P(z)]e-y7 - [K 2+Q(z)]eYz}

where K1 and K2 are determined from the terminal conditions at z- z and

z z 2 by

K, e YZl P2 P(z 2 )e - Q(zl)e

K1  pe y(z 2 " z1 ) -Y(Z2 -z)
e - plp2 e

(88)

YZ1  _Y5I
-Yz 2  p1 Q(z1 )e p(z 2 )e

K2 = p2 e y(z 2 -zI) -Y(Z 2 -zI)

e - P l P 2 e

in which plP2 are the voltage reflection coefficients at zlz 2 respectively.

The coupling functions P(z) and Q(z) are related to the total impressed

field Ez by

It is to be noted that V is the voltage of the TEM mode on the transmission
Sline. The total voltage Vt is equal to V+ V , where Vi is the potential

directly related to the incident electric field. At the ends of the lint,

Vi must be taken into account.
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rz E (v)
P(z) - J Y "2 Z dv

zI

I•2 E (v)(89)
Q(z) W e-v dv

2Zc

The coefficients K1 and K2 account for the effects of the terminating
impedances and the reflectIons therefrom, while P and Q account for the I
accumulation of the incremental coupled currents propagating in the positive

and negative z directions.

The propagation factor y and the line characteristic impedance Zc in

(87) for an imperfect ground are given approximately by [53]

"y - jk 1h(s)
(90)

Z W ZO H(s)
c c

i where Zc is the characteristic impedance of the line for perfectly conductingc

ground, and H(s) is given by

H(s) [1 + Gn-) 1(n -+- ) h - (91)

¶h=~I~h aaw

with Th"'o~h2 and Ta - vwawa , a being the ground conductivity, vw and a,
being the permeability and conductivity of the wire. For typical wire
conductivities and radii, the term containing Ta is significant only at

very low freqtencies (at 1 MHz this term is only 1- 2 percent of the term
containing Th). Plots of Re{H(s)} and Tm{H(s)} with the term containing

T. neglectz.d are given in Fig. 53 for frequencies between 10 kHz and 100 MHz

and representative values of Th.

j For above ground conductors, the imprescpd field Ez is related to the
i

incident electric field amplitude E by
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4 E
Lj

i -1 ej 2kh s in ip e-Jkz cos 4)cos 4)

? sin 4 cos 4 (vertical polarization)

sin 4 (horizontal polarization)

where R is the reflection coefficient at the air/soil interface [54] and

and 4 are the angles of incidence (see Fig. 54). The low-frequency approxi-

mation for the reflection coefficient gives

1l+ R 2 - (sin 4) if ' (92)l i~a~ o f Ca >>> m Wo/Sin 2ý

in which the upper sign is to be used for vertical polarization and the

lower sign for horizontal polarization of the incident field. In the case of

direction of propagation

ofincident waveI"•.• inidentabove-ground wire

x t air

•,.......... __ .....

......................................................... ..... ........... ;...........

j •~~.-T., .... ....

............................................... ............. ....... ...... ......

ii I):))i!:i ~ ~ ii• iiiiii~iiiiciiii~ ~ ilii~i~ i~~i!

LFig. 54. Coordinates for angle of arrival of incident wave.
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horizontal polarization the incident electric vector is parallel to the air/

soil interface, whereas in the vertical polarization case the incident elec-

tric vector lies in the plane that contains the propagation vector and is
perpendicular to the air/soil interface.

a.4 Semi-Infinite Wire (Short-Circuit Current)

With zI-- and z2 - 0, the short-circuit current at z- 0 is

i-sto -stO1

I (Os) = EicD(',Os) 1-e __t + 2v7- e (sin (93)s Zc s e - 1

where to = (2h sin 0)/c and T e Cola, and it has been assumed that y s/c.

The function D(p,k,s) is a directivity function given by

1 ~ sin 4~cos (4i:D(ip's) =H(s) - cos cos 0 sin * (

where the upper term applies to vertical, and the lower term to horizontel,

polarization, and H(s) is given by (91).

The product Z I (0,s) calculated from (93) is shown in Fig. 55 as ac ac
function of normalized frequency with soil conductivity as a parameter for

vertically polarized incident wave.

For a perfectly conducting ground (a= -, re t0) the second term inside

the square bracket in (93) vanishes, and D(0,0) and Zc are then independent

of frequency. This case is shown in Fig. 55 as a dashed curve.

For an impulse incident field E 6(t), the time-domain current in the
0

wire is
i 0 <--t < to 0

c Isc(0,t) = (95)
EoCD(•,2 2v'e~t (sin •)l lt I t

A*t/tO_ - 1 0

Vtt, and for a step-function incident field, the time-domain current is '
379
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Fig. 55. Short-circuit current in above-ground wire for verticelly polarized

incident field.

Stlto 0 < t < to
z 0 -0

c 1s(O,t) = (96)
0 1+4 Te (sin t/to- 1, t > to

0

where Zc and D(i,ý) are assumed to be independent of frequency. As before,

the upper sign of the exponent of sin * applies to vertical, and the lower

to horizontal polarization of the source field. Plots of the impulse and

step function responses of the wire current are shown in Fig. 56 for nominal

values of soil conductivity, wire height, and elevation angle ' of incidence.

3
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(a) impulse response

i• • =30°

. o-h= 0.1 mho

vertical polarization

K ~horizontalJ

0 12 3 4 5 6 7 8 9 10
t /to

(b)stop- function response'
S• = ~~~~30° *.....•

; o'h =0.1 mho _ .

H.,.P •-"•~vertical " ,.

N W

00! 1 2 3 4 5 6 7 8 9 10

t./to
'Fig. 56. Short-circuit current induced at the end of a semi-infinite above-

aground wire by (a) an impulse and (b) by a step-function incident

wave.
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For an exponential incident pulse described by E exp(-t/T), the short-

circuit current I is given bysc

Z1Z isc(Ot) I et, (0 < t < t)

EicTD(i,O) S - to/T e-ti

I(e -1) et/T (97)

+ 2 (sin etT edu, (t > to)
T - fo

where t' -t-t 0 . This waveform is shown in Fig. 57 for both polarizations

of the incident field and representative values of aT.

vertic_ polarization
------- horizontal polarization

.=0.2 T/ta=30

No

-•0.1 ' 10 -8 -

S0

0-7

0 I 2 3 4
;,, t/r

Fig. 57. Short-circuit current induced at the end of a semi-infinite above-

ground wire by an exponential pulse E exp(-t/T).
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b. Buried Conductors

For buried cables the high frequencies are attenuated more severely

by the soil than the low frequencies, and for cables with cylindrical shields

the shield limits the high-frequency content of the energy penetrating into

the internal conductors. Therefore, a low-frequency approach is uften

adequate for buried shielded cables and the transmission-line equations

can be used as a starting point.

The impressed field at the buried cable is

i S- sde-Jk"ZD •

Ez = 2Ei s e ke) (98)

where k"-k cos 4 cos 0, Te-O/O. T-iRid2, d is the depth of burial and

D(*,4) is a function whose value depends on the polarization and angle of

incidence of the incident field (Fig. 54)

cos 0 sin * (vertical polarization)
D(4),)) - (99)

sin 0 (horizontal polarization)

b.1 Current in Long Buried Cables

The current induced at any point z along an infinitely long buried

cable is

I(z,s) Ez/Z' (100)

where Z' - Z y. Eq.(100) is the classical form for the current induced in

an infinitely long buried cable; it also applies to points far from the ends

of a cable of finite length.

The impedance Z' in (100) is the soil impedance per unit length of the

cable given by

Z' + j• w--• Zn(8 21T ) (jyaj << 1) (101) I
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when the soil is )f infinite extent. In this expression, a is the cable

radius, r is the exponential of Euler's constant (r -1.781 . . .) and6
is the skin depth of the soil. The impedance of a conductor at the air-

soil interface (the worst deviation from the form above) is approximately

the same as the impedance at an infinite depth [53]. In addition, for most

practical cases one has

8 s 27r ra
so that the approximation Z' - JwL' can be used.

The internal impedance of metal cables is usually very small compared

to the soil impedance Z' except at very low frequencies (i.e., a few hundred5

hertz).

For an insulated cable the impedance per unit length is essentially the

same as for a bare cable. However, the insulation has a major effect on the

shunt admittance per unit lcngth Y' and hnnce on the propagation factor

Y - Z'

Eq. (100) can be written in the form

I(zs) (n6 2)aE (103)j Ln[f2/(ra) ]

The logarithm term is rather insensitive to frequency and soil conductivity.

The product w62 is the cross-section area of a cylinder of radius 6, and

GEZ is the current density in the soil in the absence of the cable. Eq.(103)

therefore states that the current induced in the cable is roughly proportional

to the current that would flow in a cylinder of soil one skin-depth in radius

if the conductor were removed. For typical communication-cable sizes and

poor soil conductivities, the Zn-term has a value of about 10.

In more conventional form, the current far from the ends of a iong

cable is approximately given by

I
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Le - 8V'r'Td

I z(z's) e_ (104)

e

If Ls1 is assumed to be independent of frequency, the current induced by an

impulse Eo6(t) is

L e-Td/(4t)E I(z,t) -- 1---- (105)

e-4o

and the current induced by a step field E iU(t) is

L' -d/(4t)
s I(z,t) ft 2 e (106)

The nortalized induced currents for the impulse and step function excitations

are shown in Fig. 58.

The cable current induced by an exponential incident field of the form
Eipexp (-t/T) is

s a I(z,S) - e (107)

Y~'TerEoD(*,O) A. ( +1/T

The time-domain current waveform is then [55]

L~~ D-E-•• I(z,t) = -/r -2 e-p/u eu du (108)

where p-Td/(4T) - pad2/(4T). The normalized current waveformf is plotted

in Figa 59 for several values of the depth parameter p

b. 2 Parametric Dependence

It can be seen that, except for the logarithmilc dependence in L' the

ia

induced current in (108) is

I(t,z) ( E107 (19)
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A plot of the peak current as a function of soil conductivity with the expo-

nential time constant T as a parameter is given in Fig. 60. The peak current

is normalized to the peak incident field E , and the value of kn(V& 6/ra) =10

is used.

The induced current also depends on the angles of incidence of the wave
through the directivity function D(ý, •) of (99).

b.3 Current Near the End of a Conductor

At the end of a semi-infinite cable the current is the same as the

current far from the ends if the cable end is short circuited, half the
current far from the ends if the cable end is terminated in its characteristic

impedance, and zero if the cable end is open circuited.

W-

ii I

10415 1(5? 161
soil conductivity ol(mhos/mn)

Fig. 60. Peak cable current as a function of soil conductivity for an inci-

iI

dent exponential pulse, Eiexp(-t/T) and D(*,ý) 1 .
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The current near the end of an open-circuited cable is

E
I(z,s) -'S (1- e-y') (110)

S

The current induced by an exponential pulse of incident field is

L' -d - dz
s I(z.s) : e - e (s-/1 (111)

where Tdz j-a(d+ z) 2  The current waveform is then

s I(z~t) -••(t/T, Pd) -,(t/r, pdz) (112)

where Pd 'Td/(4T), Pdz - Tdz/( 4 T) and

3(t/T, p) - et/ 2 f -p/u Cu dU (113)FJr0

which is plotted in Fig. 59. The waveform near the end of an open-circuited

cable as calculated from (112) is shown in Fig. 61 for Pd= 0 (depth of burial

d• 0) and several values of Pdz"

2.1.3 PLNETRATION

In this section engineering formulas and data will be presented for

three different electromagnetic penetration mechanisms: (a) penetration

via deliberate antennas, (b) transmission through apertures, and (c) diffusion

through imperfectly conducting walls. These penetration mechanisms also

occur at other shielding layers of the topological model, and hence most

data presented here apply to Chaps. 2.2-2.4.
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Fig. 61. Waveform of the cable current near the end when cable end is open-

circuited for an exponential pulse excitation.

2.1.3.1 Antennas

Antennas are designed to transmit and receive electromagnetic energy

within specified frequency bands, and aircraft antennas are no exception.

Clearly, then, antennas are of major concern in the assessment of EMP v,•Iner-

ability of a system such as an aircraft. The iLuclear EMP is usually assumed I
to have a broad fre•l'ency spectrum as well as a high field strength These

characteristics of the EMP make it necessary to analyze the response of an

antenna not only within its normal operating band but also outside this band,

where the antenna's behavior is usually of no concern.

The response of an antenna is completely characterized by fts Thdvenin

or No-ton equivalent circuit at the antenna's input connector. Between the

connector and t'te antenna gap there can exist many different kinds of matching

or compensating networks to tune the antenna 4.mpedance to a desirable level
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,4
at the connector. In Fig. 62a the internal network is a matching network
which may comprise transmission lines, baluns, hybrid circuits, transformers •

or lumped elements. The external network consists only of the antenna's

radiating element, which is characterized by the two parameters in the
Thdvenin or Norton equivalent circuit looking outward from 1-he antenna gap.

The aim is to calculate V (or" Isc) and Zn (or Yin) of Fig. 62b, from theoc !cin i
knowledge of which one can calculate the voltage and current at any linear

or nonlinear load attached to the connector. For antennas whose maximum

linear dimensions are small compared to the local radii or curvature, Voc

(or s)can be factored into a product of effective height (or area), and

the local charge (or current)density. The effective height or area is cal-

culated by assuming an infinite ground plane, while the local charge or

current density is to be obtained from the solution of the external inter-

action problem involving the aircraft in the absence of the antenna under

consideration.

There are many ways of classifying antennas. One is to group them

according to the function of the subsystem to which the antenna belongs.

- (a) external internal A connector
network network terminals

ZiI

- 0 --

Fig. 62. Schematic diagram and equivalent circuits of an antenna.
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This classification naturally leads to navigational, communication, ECM,

radar antennas, and so on. This grouping of antennas is particularly

useful when discussing antenna applications. Another widely used method

of classification is based on the frequency band in which the antenna

operates. This method leads to VLF, LF, HF, VHF, UHF, L-band, X-band

antennas, and so on [56]. A third classification groups the antennas

according to their physical structure, such as blades, loops, slots, wires,

etc.; this latter classification will be adopted in this section.

This section deals only with aircraft communication and navigation

antennas. Among the most notable omissions aie the ECM and ECCM antennas.

More detailed analyses of the antennas discussed in this section as well

as other antennas can be found in [57,58].

2.1.'.1.1 Blade Antennas

This type of antenna is basically an antenna element builc into a
blade (Fig. 63) or aerodynamic vane mounted externally on the aircraft

fuselage. The antenna height ranges from about 6 cm (L-band) to 45 cm (VHF).

A mathematical model for this type of antenna is a half ellipsoid resting

on a perfectly conducting ground plane [2].

x

i md
a9 

0
X2o

connector
Fig. 63. Illustration of a typical blade antenna.
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The two most convenient parameters for describing the external network

of Fig. 62a are the induced short-circuit current Iind and the antenna

admittance Ya at the gap (Fig. 63). From the continuity equation one has

Iind - sQ(xo), Q(xo) being the total charge collected by the portion of the
antenna above x- x . For wavelengths greater than about four times the

0

antenna height, Q can be obtained from the solution of the electrostatic

problem of a perfectly conducting ellipsoid immersed in a uniform external

field En, which is related to the surface charge density p on the conducting

plane by En- P/Co" If Q is expressed in terms of the displacement current

density S o3n, the equivalent induction area A may be introduced through

the relation Iind EA If one prefers to speak of the induced open-

circuit voltage Vind, the effective height he will appear through Vind- heEn.
Since Iind- YaVind and since Ya is basically given by sCa one arrives at the

relation

eoAeq ehCa (114)

where Ca is the antenna capacitance.

For a half ellipsoid symmetrically resting on a perfectly conducting

ground plane with semi-axes a,b,c (see Fig. 63 where c is the semi-axis along

the z-direction), the equivalent area A is given by [2]
eq

2 2
Ae(xo) - TbcN (1- xo/a ) (115)

where (a > b > c)

' (2 -b2\/T* "* _______

N~ 1 a2 (116)
a abc F(y/a) - E(qfal

F and E are respectively the incomplete elliptic integrals of the first and
second kinds [7] and

cprn arcsin 1-c2a2
(117)

2) 2 ý2 ý2
I arcsin 1(a- - )/(a -_c)
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When c << b, the ellipsoid degenerates into an elliptic disk or blade

and consequently (115) is simplified to

eq o /1- K(m) -E(m) xa) m 1 (1 2 2 (118)

where K and E are complete elliptic integrals of the first and second kinds,

and m -1- b2/a 2. Table 13 gives the values of the normalized equivalent area

of a blade for various b/a ratios.

TABLE 13. NORMALIZED EQUIVALENT AREA OF AN ELLIPTIC DISK (BLADE ANTENNA)

bAe (0) A e (0) aE
a wab gab

3 -3

10- 137.0980 1.0000 10"

10-2 20.0328 1.0002 10-2

0.1 3.6945 1.0112 0.1

0.2 2.4420 1.0324 0.2

0.3 1.9890 1.0581 0.3

0.4 1.7376 1.0864 0.4

0.5 1.5865 1.1162 0.5

0.6 1.4836 1.1469 0.6

0.7 1.4091 1.1782 0.7

0.8 1.3527 1.2100 0.8

0.9 1.3087 1.2413 0.9

1.0 1.2732 1.2732 1.0
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For the calculation of Y in the Norton equivalent circuit across thea
antenna gap (Fig. 63), one considers a cylindrical antenna with equivalent

radius equal to about one-fourth the averaged width of the blade [56]. Then
the impedance sum formula for an asymmetrically driven antenna can be used,

with proper account taken of the presence of the ground plane [59].

a. UHF Communication Antennas

A very common UHF antenna is shown in Fig. 64a, and Fig. 64b is the

corresponding equivalent circuit in which L is the inductance of the short

stub. This stub not only provides a dc path for lightning protection

between the upper part of the antenna and the aircraft skin but also

mechanically fastens the two parts of the antenna. The different sections
of the transmission lines and the end capacitance Ce are for tuning purposes,

so that within the operating frequency band (225- 400 MHz) the VSWR is

about 2:1 at the input connector. The capacitance Cp accounts for the two

ends of the gap, and Ya and Iind are calculated as discussed above. Figs.

65a and 65b show the frequency variations of Z and h together with some
in e

measured data for Zin.

b. UHF/L-Band Antennas

Figs. 66a and 66b depict all the electrical connections of a typical I
UHF/L-band antenna (operating in the frequency regimes of 225- 400 MHz for

the UHF-band and 0.95- 1.22 GHz for the L-band). The total antenna height

is about 20 cm, which is roughly equal to a quarter wavelength at the mid-

frequency of the UHF-band. The equivalent circuit is given by Fig. 66c.

The characteristic features of this antenna are the L-band choke and the

two gaps. At frequencies below UHF the choke is ineffective, and hence

the top and the mid-sections can be treated as one piece of metal. The

external circuit elements Y and Iind correspond to an antenna with a gap

at about one-third the antenna's height from the base. Within the L-band
the choke acts like a quarter-wavelength transmission line, and so the

top section need not be considered. Within this frequency band Y anda
Iind correspond to an antenna with a gap at one-half the antenna's height

from the base, while other elements in Fig. 66c remain unchanged. What
is not shown in Fig. 66a is the diplexer connected to terminals A,B via
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stu B al dimensions
(b) A inl centimetersI

erU2 .5 5  er-2 .5 4rZ5 5  L '
5O.QUl 85.2 a 27.8 a1 p a 3ind

4~Lw2T.6nH, Cpwl.5pF, Ce=18.2pF

Fig. 64. Schematic diagram and equivalent circuit of the UHF Communication

Antenna AT 1076.
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Fig. 65. Input impedance and effective height of the UHF Conmmunication Antenna

AT 1076 (225- 400 MHz).
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Fig. 66. Schematic diagram and equivalent circuit of the IJHF/L-Band Antenna

DM CNI8-l.
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a coa%'al cable. This diplexer has a low-pass filter and a high-pass filter

to separate the UHF- and L-band channels. In Figs. 67a and 67b the frequency

variation of the input impedance and the effective height are displayed

together with some measured values for Zin"

c. VHF Communication Antenna

A schematic diagram of a typical VHF communication antenna is shown in

Figs. 68a and 68b. A careful examination of these figures reveals that

Fig. 68c is the appropriate equivalent circuit for this antenna. The trans-

mission lines with impedance Z - 176 Q represent the empty portion of thec

slot, whereas the transmission line with impedance Zc/Iv€r - 119 represents

the dielectric-filled portion of the slot. The impedance Zc can be estimated

from the analysis of two coplanar strips of unequal width by the method of

conformal mapping [60]. The positions of the tap points D,F, the length of

the dielectric portion of the slot, and the three added coaxial cables act

as a mptching network, so that the VSWR is less than 1.75:1 at in-band

frequencies (116- 156 MHz). The ideal transformer in the equivalent circuit

accounts for the fact that the shont-circuit current between D and F is juSt

a fraction of 1Id' which is the total induced current flow-ng through a

cross section of the antenna (located at D or F and being parallel to the

antenna base) when the slot is absent. The ideal transformer also accounts

for the radiation effects on the antenna's input admittance, since Y ina

Fig. 68c is the admittance across a gap bisecting the entire antenna at the

location of the cross section discussed above. For more details the reader

is referred to [61]. The transformer ratio n can be estimated by examining

the induced charge density on an ellipsoid immersed in a uniform static

electric field. Fig. 69 shows the calculated input impedance togothgr with

some measured data.

d. VHF/UHF Communication Antenna

The antenna shown in Fig. 70a operates in two frequency ranges: 116-

152 MHz (VHF) and 225 - 400 MHz (UHF). The elements shown with hatching and

cross-hatching are metallic strips forming trans.iission lines and capacitances

with the radiating metallic plate. The parallel piece of short-circuited
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Fig. 67. Input impedance and effective height of the UHF/L-Band Antenna

DM CNI8-1 (UHF-band: 225- 400 MHz. L-band: 0.95 -1.22 GHz).
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Fig. 68. Schematic diagram and equivalent circuit of the VHF Communication

Antenna S65-8262--2.
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Fig. 69. Input impedance of the VHF Communication Antenna S65-8262.-2 4'

(116- 156 MHO).
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77. dielectricI

A (a) Q Radiating

VHF

section

UHF
35.0 section

-coaxial

line

all
dimensions in

centimetersj

Lt r r ac

0 I
Ar 2

A 1HI L2 f=l5 n

Ln p

Cp L = 50pF
50n L , ya c C, =0.46nF

Fig. 70. Schematic diagram and equivalent circuits of the VHF/UHF

Communication Antenna 37R-2U.
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coaxial cable near the VHF terminal (A,B) acts as a quarter-w'velength choke

in the UHF band and the lumped inductance near thu UHF terminals(A',B) is

intended to short circuit the VHF signal. Thus these two elements provide

isolation between the two frequency bands. The equivalent circuits for the

VHF and UIF sections are shown in Figs. 70b and 70c. The admittance Y is
a

that of the base-fed blade antenna and the blade identified in Fig. 70a is

the radiating element. The current generators I (= SQc, and V' (- 9Q)C c
originate from the total charges Q and LI induced on the two hatched plates

c c
and the cross-batched plate, respectively, through capacitive coupling to

the induced charge Qind on the radiating element. The ratio n= Qc/Qind (or

n' - Q'/Qind) is approximately equal to the ratio of the total area of the

two hatched plates (or the cross-hatched plate) to that of the radiating

element. The circuit elements C (or CD) are the total capacitance between
p p

the hatched plates (or the cross-hatched plate) and the radiating metallic

plate. The capacitances C1 and C' account for the capacitances of the

hatched and cross-hatched strip lines together with the two open-ended

pieces of coaxial cable located near the antenna center. The inductance L

represents the aggregated effect of the hatched strip lines (including Lhe

fact that the strip line is grounded at the antenna base). The frequency

variations of the input impedances at the two antenna terminals are shown in

Figs. 71a and 71b.

e. L-Band Blade Antenna

Figs. 72a and 72b show two different antennas that both operate between

0.96 GHz and 1.21 GHz. Although their overall dimensions and in-band properties

are similar, their out-of-band properties are quite difterent.

Fig. 72a shows a blade antenna with a slot (the slot often being

referred to as a notch). The equivalent circuit is shown in Fig. /2c. The

mode cf operation and approach in analyzing this antenna are similar to those

of the VHF communication antenna above. The induced current I and antenna

admittance Y in the equivalent circuit of Fig. 72c are the quantities referred
a

to the same blade antenna having a feeding gap across the entire blade at D,F.

The two transmission lines with characteristic impedances 147S and 300 I are
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due to the slot, whereas the transmission line between D,F and A,B represents

the coaxial cable with the characteristic impedance of 50 Q . The frequency

variation of the antenna's input impedance is shown in Fig. 73a.

The interior structure of another L-band antenna is shown in Fig. 72b.

The actual antenna element is a thin metal sheet cut out in a regular symmet-

ric pattern. The holes cut out in the sheet have the effect of increasing

the antenna inductance, since the current has to flow around the holes,

thereby lengthening the current path. To find the input impedance, the

antenna may be modeled as a conical monopole with height 7 cm. The cone

angle is determined by equating the capacitances of the monopole model and

actual antenna. The antenna capacitance was found to be about 7.8 nF using

the variational principle, resulting in a cone angle of 820 [62]. The

effective height is determined from the relationships

h E V Z I =sc E A Z (119)e n oc a sc o n eq a

It is found in [2] that for a blade antenna, A is slightly larger than
eq

twice the geometric area of the antenna element. The input impedance is

displayed in Fig. 73b, while the effective heights of both antennas are

given in Fig. 74.

Both L-band antennas have roughly the same input impedance and effective

height at in-band frequencies. The notch antenna has an inductive input

impedance and a very small effective height for low frequencies, whereas the

other blade antenna has a capacitance input impedance and considerable

effective height for low frequencies.

2.1.3.1.2 Loop Antennas

Loop antennas on aircraft are usually physically small and sometimes

have ferrite cores. The frequency of operation ranges from tens of kilo-

hertz (VLF) to hundreds of megahertz (VHF).

The theory of a circular loop is most extensive [63] and can be

applied, for practically all engineering calculations, to loops of other
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shapes provided that (a) the perimeter of the given loop is equated to
that of a circular loop in the antenna-impedance (Z a) calculation, and

(b) the geometric areas are equated in the induced-voltage (Vind) calcu-
lation. In certain cases where the ferrite core is a rectangular slab,

such as the VLF magnetic-loop aircraft antenna, two magnetostatic boundary-

value problems need to be solved for the determination of the external

elements Za and V nd [64].

a. Localizer Antenna.

Figs. 75a and 75b show all the electrical elements of a localizer

antenna and Fig. 75c is the equivalent circuit. The external elements

Za and Vind can be calculated as discussed above with due account for the

factors of two resulting from the presence of the ground plane. The tuning

capacitors at the ends of the loops (Fig. 75a) are represented by C in

Fig. 75c. The coaxial cable wound around the center rods serves as a

balun, converting a balanced signal into an unbalanced one for the terminals

A,B and A',B within the in-band frequencies (108- 112 MHz). The wires

wrapped around the 100 0 resistor can be identified as a hybrid circuit

which splits an incoming signal into two equal parts for the two terminals

"I A,B and A',B. Because of the close coupling between the wires, M can be

taken equal to L. In Fig. 76a is plotted the input impedance Z in referred

to A,B with A',B open circuited or vice versa. Also shown in the figure

are some measured data. In Fig. 76b is shown the frequency variation of

Voc across A,B or A',B for an incident plane wave with the electric field j
vector perpendicular to the ground plane and the magnetic field vector

perpendicular to the plane of the loop.

b. VOR Antenna

Fig. 77a shows a VOR (VHF Omni-Range) antenna. This antenna is usually

located inside a flush radome on the vertical stabilizer. The antenna proper

consists of a rectangular loop containing three gaps. The capacitance C1

in the equivalent circuit shown in Fig. 77b represents the combined capaci-

tance of the two gaps on the long sides of the loop. This antenna has a

very low VSWR (1.5:1) within in-band frequencies (108- 118 MHz). This is
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achieved by appropriately adjusting the tuning elements L1 , C1 and C2 .

The capacitance C3 s used to block any low-frequency signals, while R

is used to dissipate these signals.

c. Magnetic-Loop Antenna

The magnetic-loop antenna is a VLF/LF (17 - 60 k~z) receiving antenna,

usually mounted on the top of the fuselage and enclosed in a fiberglass

cadome. This antenna as shown in Fig. 78a has two sets of coils wound

perpendicularly to each other on a matrix of ferrite rods. A schematic

drawing depicting the winding arrangements of each coil and the tap points

is shown in Fig. 78b. The equivalent circuit for the loop, the cable, and

the junction box are presented in Fig. 78c. To determine the two external
quantities Z and V two independent magnetostatic boundary-value problems

appropriate for a coil wound on a rectangular ferrite slab are solved by

integral-equation techniques [64]. Fig. 79a shows the results of such

calculations, where f is the dimensionless flux enhancement factor due

to the presence of the ferrite slab, and fL is defined so that f LO a/41r is

the inductance of a single turn of wire wound on the ferrite slab, a being

the wire radius. Thus, one has

Vind -sNf B0A, Z = R + sL

31.2 (NA/22 a N2 fL1oa/4(1

and B is the magnetic field normal to the coil and A is the area of ao

single turn. The input impedance between A,A' is shown in Fig. 79b for

frequencies below 1 MHz. Above 1 MHz the input impedance is dominated by

the two shunt capacitances in the filter.

2.1.3.1.3 Slot Antennas

The theory of slot antennas is based on the Babinet principle, from
which one can obtain results for a slot antenna directly from those of the

complementary dipole antenna. Let the superscript s denote quantities of

a slot antenna and the superscript d quantities of the complementary dipole

antenna. Then

413



coils

D 
-I

11 . 11 .3f rrt

Oa/ C .3 mH 0.3 nH 1vAI-----------------
L------------JlowpassfilerA

F: ~~~~~~~n In manei lopatna hF -- - - - - -

/ucto boxIVind 2 1-6 4-ý c upl1Fig.Zll:,:- 78 S!emti digasadeuvlnIcru fteMgei

An e n 
BS1 

0 / RG 9 .L o

Vf Z I InF IF4I14
V 2 =95n

[nd /2 z
e =22 1..,.. I



(a) 800

30 -B 700

~BbO -600
20 ". 500 %)

" --- ....... - - 400

10 300

ft -200

100

0 1. J1
0 0.02 0.04 0.06 0.08 0.1

c/b

(b) to 30k to 7.1I k, ,.,

IZinl-ii
.AC -900

2 -00

0o 9

0 0.2 0.4 0.6 0.8 1.0
frequency (MHz)
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of a single turn on a ferrite slab, and (b) the input impedance of

the Magnetic Loop Antenna AS-1909/ARC-96 (17- 60 kHz).
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Z Z (121)

kin 'in 4 o•

i •×•(s) 1 ~Zo •d 12
Y e 2 (d) e (122)

zin

II
where Z is the free-space impedance and y is the propagation vector of the0
incident plane wave. Eq.(121) relates the input impedances of the two

antennas and is well-known to the antenna engineer. Eq.(122) is less

familiar and expresses the relationship between the effective heights. In

the case of a slot antenna, it is physically appealing to think of the short-

circuit current I(S) across, say, the mid-points of the slot. Then

i(s) 1 (s) lj•(s).i
s z(.s) Voc Z(s) e•in •in

(123)

= 2-i. -(d)

where the last relation follows from (121) and (122) with Y x~ i Y 0
Eq.(123) is dual to the equation V d) . for the complementary

o¢ e

dipole antenna.

a. Glide-Slope Track Antenna

The glide-slope track antenna shown in Fig. 80a is a receiving antenna

for the frequency range 329- 335 MHz. It is the complement of a folded

strip dipole with capacitive loading at both ends (Fig. 80b). The equiva-

lent circuits of both antennas are shown in Figs. 80c and 80d. The element

Za is the impedance of the common (or symmetric) mode, and the transmission

line accounts for the differenttal (or antisymmetric) mode. The impedance

Z is the characteristic impedance of the transmission line formed by the

two parallel conductors of the folded dipole. More detailed analyses of

the folded dipole are presented in [54, 56, 65, 66]. A derivation of the

expression for the current generator in Fig. 80d is given in [67]. With
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the aid of (121) - (123) one obtains the equivalent circuit shown in Fig. 80c

for the slot antenna. The voltage generator with strength 2dE Z'/Z can be
n c 0

replaced by a curreat generator in parallel with the transmission line.
Physically, this current generator can be understood as arising from the

total net charge induced on the (short-circuited) center strip. The input

impedance and effective height of the glide-slope track antenna are shown

in Figs. 81a and 81b.

b. Glide-Slope Capture Antenna

The glide-slope capture antenna shown in Fig. 82a also makes use of a

slot. This antenna is used to receive signals in the band 329 -335 MHz.

The equivalent circuit is presented in Fig. 82b, where C is the capacitance

between the tuning stub and the strip liiLe. The impedance Za can be

determined by first finding the input impedance of the slot's equivalent

dipole and then using (121). The strength of the voltage generator

Vind (Z /Z )h E ,where h is approximately half the slot length for
id 0 a en' e

frequencies of interest. The input impedance and effective height are

shown in Figs. 83a and 83b.

2.1.3.1.4 Bowl Antennas

Most aircraft antennas operating in the gigahertz frequency range are

horn antennas. Sometimenns e an quinte gigshallow and in these cases

the horns simply house the antennas. In other cases the horns are deeper,

and the horn becomes an important part of the antenna proper. All these

antennas are grouped here under one general heading -- the bowl antenna.

For this type of antenna the calculation of field penetration into a bowl

is an essential step, since the field picked up by the probe or loop inside

is modified by the bowl. Usually the importaut wavelengths of the EMP are

much larger than the dimensions of most of the bowls found on an aircraft;

hence, techniques applicable to static boundary-value problems are adequate

in the determination of field penetration. Analytical and numerical solu-

tions have been found for a two-dimensional trough [68], a hemispherical

indentation [69,70], and a semi-infinite circular pipe with an infinite

418



(a) , ' . , ', ' " ' '

160
-600I4Q IzIfI --- 6°

140-

120- 300

S 0 0  / 00

80 /

60 /-300

40 /
20 - -60020 /

0 100 200 300 400
frequency (MHz)

-E Jo • 90°,
(b 2.................. /.1

8-l

6 /he --- '"600

4-
-300

2-O0 O. . .!

0 100 200 300 400
frequency (MHz)

Fig. 81. Input impedance and effective height of the B559 and B561 Glide-

Slope Track Antenna (329- 335 MHz).

419



B ED strip lIne

A
E D

(b) z z
B'

A B

C = 2.1 pF z
H K,J

ze 50a5.6

all dimensions Zc/2
in centimeters

'' Fig. 82. Schematic diagram and equivalent circuit of the B558 Glide-

Slope Capture Antenna.

420



(a )- , , , i , , , , ' , ', , ,' , -.*

160 IZInl
140 in 600

1•20- 1 300

S1000

N8 0  
0'

60 -300
40-, ^

20 \ -600

100 200 300 400
frequency (MHz)

(b) 0.18 .- 900

0.16 Ihl --
-6000.14 /he_

"• 0.12 300

0.10 I

0.06

0.06 -- _300

0.04
0.02 -60

0,-L -900
0 100 200 :300 400

frequency (MHz)

Fig. 83. Input impedance and effective height of the B558 Glide-Slope

Capture Antenna (329 -335 MIz).

421 -i

I '91 .d



r*

flange [71,72]. For other bowl shapes one either idealizes the shape, so

that a solution is already available, or resorts to some numerical scheme

for the boundary-value problem appropriate for the bowl geometry at hand.

a. Marker Beacon Antenna

The marker beacon antenna shown in Fig. 84a is flush-mounted at the

bottom of the fuselage and operates around 75 MHz. The bowl can be approx-

imated by a hemispherical indentation. The equivalent circuit is given by

Fig. 84b in which L1 and L2 are respectively the inductances of the small

and large loops formed by the metal rod and the feed wire. Figs. 85a and

85b give the frequency variations of Z and V l/B, where B is the magnetic
field tangential to the aircraft skin (with the bowl covered) and perpendic-

ular to the plane of the large loop.

b. Low-Range-Radio-Altimeter Antenna

Figs. 86a and 86b show two typical low-range-radio-altimeter aircraft

antennas, one with an electric p~robe and the other with a magnetic loop as

the feeding element. These antennas operate between 4.2 -4.4 GlHz and are

flush-mounted at tLh bottom of the fuselage. The equivalent circuits of

these antennas are shown in Figs. 86c and 86d.

iI

(a) (b)
()WM C R

(2f14 x 76 x, 15.2)

AA
Idieletric aicraft mL35.7nH, L29O.OnH, M=6.5nH,

cover skin
all dimensions in R =0. 160, C " 49.9pF

oentimeters

Fig. 84. Schematic diagram and equivalent circuit of the AT-536/ARN

Marker Beacon Antenna.
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Fig. 86. Schematic diagrams and equivalent circuits of two typical low-

range-radio-altimeter (LRRA) antennas.

• i 1
The two important problems to be considered are the field penetratioa

into the horn and the effect of the horn on the impedance of the small stub
or loop. From the viewpoint of mathematical tractability the geometries of

Figs. 86a and 86b can be described as a quasi-pyramidal horn with an infinite

flange. The boundary-value problem, either electrostatic or magnetostatiL,

is quite complicated to solve, since the solution requires solving a trans-

cendental equation for the degree of the Legendre functions. Often an

adequate engineering estimate can be obtained by studying the solutions

for rectangular wells with different dimensions and then exercising one's

judgment to choose the solution appropriate to the geometries of Figs. 86a
:3 and 86b.

2.1.3.1.5 Large Antennas

There exist antennas whose dimensions are comparable to or even greater

than the dimensions of an aircraft. For these antennas the airframe is

II
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II
either part of the antenna itself or appe -s simply as a capacitiv. loading

on the antenna. The HF (2 - 30 MHz) fixed-wire antenna is a typical example

of the former case, while the VLF/LF (17- 60 klz) trailing-wire antenna

represents the latter. The method of analyzing these antennas is given in

Sec. 2.1.2.3.1.

a. VLF/LF Trailing-Wiie Antennas

Two common VLF/LF (17 - 60 kHz) transmitting wire antennas are shown in

Fig. 42. The response of this type of antenna to EMP can be obtained using

two different steps. In the first step, which is valid in the frequency

range where the aircraft is e'.ectrically small, it is sufficient to use

the capacitance Ca of the aircraft to characterize its influence on the

antenna response. The interaction between the two wires in the case of

the dual-wire antenna zan be calculated expeditiously by decomposing the

wire currents into common-mode (antenna-proper) currents and differential-

mode (transmisslon-line) currents. In the second step, which is valid in

the frequency region around the first few aircraft resonances, the aircraft

is modeled by intersecting sticks, as given in Sec. 2.1.2.3.1.

Fig. 87b is the equivalent circuit appropriate for the situation

depicted in Fig. 87a. Exolicit approximate formulas for V Z', h,
Z1a, Z C, a and 0 can be found in [73]. It should be noted that the response
a

of the siagle trailiag-wire antenna shown in Fig. 42 can be directly

obtained from that of the dual-wire antenna by letting the length of the

short wire go to zero.

The input admittance and the short-circuit induced current of the

dual-wire antenna (Fig. 87) are given in Fig. 88 for frequencies below
0.5 MHz, aatd in Fig. 89 for the frequency range between 0.5 MHz and 6 MHz, .
which includes the first two resonant frequencies of the aircraft (E-4)

under consideration. Notice that in Fig. 89 the frequency scale (I MHz-

6 MHz) on the top is for the solid wiggly curve, whereas the bottom

frequency scale (0.5 MHz- 1 MHz) is for the dotted curve. The loading

effects of the antenna transmitter and coupler on the induced antenna-

wire currents can be found in [74].
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Fig. 87. Schematic diagram and equivalent circuit for the dual-wire antenna.
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b. HF Fixed-Wire Antenna

The two HF fixed-wire anteruas on the E-4 aircraft are shown in Fig. 90a.

A schematic drawing of the stick-model aircraft used in the calculations is

shown in Fig. 90b. To find the input impedance between A,B when the port

A',B is terminated by the impedance ZL let the antenna be driven with the

voltage V between A,B. The induced currents on the antenna wires and the

aircraft can be decomposed into (a) radiating currents on the aircraft,

(b) a TEM mode such that the wire currents are of equal magnitude and

direction with the "return current" along the fuselage, and (c) a TEM

mode such that the wire currents are of equal magnitudes but opposite

directions (with no net current along the fuselage). The details of this

decomposition can be found in [75]. An equivalent circuit of the antenna

is shown in Fig. 90c. The admittance Y is defined at an imaginary gapa
across the fuselage at the location of the antenna feed-point, and can be

obtained using a stick-model aircraft. The transmission linewith the
characteristic impedance Z' represents the first TEM mode described above,

Cwhereas the transmission line with impedance V" represents the second TEM
c

mode. The ideal transformers account for the coupling between the TEM modes

and the radiating currents. The current Iind is induced on the fuselage by

a plane wave at the location of the antenna feed gap and in the absence of

the antenna wires (see Fig. 90b). The other current generators are found

using the transmission-line theory of [2]. Fig. 91 shows the frequency
variation of the input impedance and effective height. In this case, the

effective height relates the open-circuit voltage to the incident electric

field, and is a function of the angle of inci.dence and polarization of the

incident plane wave. These quantities are defined in Fig. 90b. Furthermore,

both the input impedance and effectivc height depend on the load impedance

ZL. In Fig. 91 the values ZLm 0, ZL w and 6 =120* have been used. Quantities

with superscript "sc" correspond to ZL= 0, and quantities with superscript

floc" correspond to ZL- 0. The variation of he with 6 can be found in [75].

4 The transient response of this antenna to an incident, double exponential

plane wave is given in [76]. .
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fixed-wire autennas on the E-4 aircraft.
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c. HF Notch Antenna

The HF notch antenna shown in Fig. J2b can be found on the B-I aircraft.

This antenna has a slot parallel to the leading edge of the veitical stabi-

lizer and it is shunt fed at the base. The equivalent circuit is given

in Fig. 92c. The circuit elements Y and I refer to a horizontal gap
a ind

across the entire vertical stabilizer at the junction between the fuselage

and the stabilizer. These two quantities are obtained from stick-model

calculations. The ideal transformer accounts for the fact that the induced

short-circuit current flowing in the narrow strip of the leading edge of

the vertical stabilizer is only a fraction of the total induced short-

circuit current flowing in the entire vertical stabilizer. The transmission

line with length 3.08 m accounts for the slot, and the voltage generator

V represents the magnetic field linking the slot at low frequencies. The

input impedance and the equivalent height are shown in Fig. 93.

2.1.3.2 Apertures

The determination of EMP penetration through holes or apertures in the
outer skin of a missile or an aircraft is an important first step in the

overall assessment of induced voltages and currents at the connector pins

of electronic boxes. Apertures oi interest may be intentional (e.g., small

windows, open access holes, etc.), or they may be inadvertent (as in the

cases of cracks around doors and plates covering access ports and of poor

elecztrical seams (riveted joints) in the outer skin of an aircraft or a

missile).

In this section apertures of small and moderate electrical size in an

infinite, perfectly conducting plane will be treated, whereas apertures

backed by wires and cavities, and apertures on a curved surface will be dealt

with ii Chaps. 2.2 and 2.3.

2.1.3.2.1 Dipole-Moment ýpproximation and Polarizabilities

In many EMP-rclated applications, the apertures of interest are

electrically smal.L, a property which leads to very helpful simplification

in computation. By electrically small it is meant that the maximum

dimensions across the aperture are short relative to the wavelengths of
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interest. The electromagnetic field that penetrates an electrically small

aperture in an infinite, perfectly conducting plane can be represented

approximately by the radiation fromu equivalent electric and magnetic

dipoles and m of the aperture (cf. Sec. 1.4.1.4.2). The dipole fields
+d +d a+a
E HJH at r radiated by pa and ma at the origin of the coordinate system in

free space are given by

% 1 × [V(8) -• sj e(S) x V'rs'
E (r,s) - [P >cVG(r, s) a1 1 s > C(,aa a

(124)
4d + +
H (r,s) - s a (S) xVG(rs) -V X[II a)x VG(ro)]

where G(r,s) - e'Yr/(4Oir). 'in the time domain -dPld are given by

4d41l- 1 1 L 1E~ ~ (rP -• x p(o) X - 4,11 -2ý"m~)
a 2 r]

(125)

47rr 2 a z r41t [2 a r]

where :.a s tihe unit vector perpendicular to Uhe plane of the aperture., and

the dot represents time differentiation. Note that the radiated far field

has been neglected in (125).

The aperture equivalent electric and magnetic dipole moments Pa ma
are related to the electric and magnetic (imaged) polarizability tLnAuru

a e and II of an aperture in an infiniLe ground plane by (cf. 1.4.1.4.2)

++
p -2e(A , a-- * (126)

Pa a SC a m se

where E c, r s are the short-circuit fields at the aperture.
SO c

The representation of the effect of an aperture in a perfectly conducting

surface by equivalent dipoles is suggested in Fig. 94. In Fig, 94a is ueen
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EVý H

condutingshorted aperture
s urfc

(a) original problem. (b) equivalent problem

Vig. 94. (a) Portion of: conducting surface wit~h aperture; (b) shorted

)eurture with equivalont dipoles on shadow side of surftece.

a portion of a conducting surface with anl aperture iiluaJlnated by an incident

field (ii)*while in Vig. 94b is shown thle equivalent problem. In the

equivalent problem, the aperture *is short-circuited, i.e., thle conducting

surface is made continuous, extending over the region where the aperture

axiwted in the original problemt, and the equivalen~t dipoles are placed -at

thle shorted aperture on thEo shadow side of thea surface -- opposite from the

so-called illuminated side of the surface in which the sources exist.

2.1.3.2.2 Si!Ule Avertures

u. Simple Apertures of Smull Ul,.cctricul Size

The imaged Ipolarizabilities a. and (AMfor thle Circle, the ellipse, ane

the narrow slit have been computed theoretically [77 - 79] and their expres-

sions are given in table 14.

(Qohn [80,811 has expe-iauentally confirmed the expresoions in table 14

and has also experimentally determi~ned the polarizabilicies of apertures of

several other shapes. His data, together wilh1 values based upon table 14,

are pregented In Figs. 95- 98; Vigs. 96-98 are taken from [82).
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Fig. 95. Normalized electric(i.naged)polarizability of an elliptic-al aperture.
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Fig. 97. Normalized magnetic (imaged) polarizabilities for ell1iptical,

rectangular', and rounded rectaftgular apertures.
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wIP

Fig. 98. Norw~1.ized magnetic (imaged) polari~zabilities fcr three aperture

Shapes.
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De Reulenaere and Van Bladel present polarizability data using a

different normalization [79]. In Fig. 99 is plotted a A-312 versus w/k,

where A is the aperture area. As can be seen in Fig. 99, eA-3/2 is not

'r-ry sensitive to aperture shape and depends almost entirely upon the width-

to-length ratio w/k. The normalized magnetic (imaged) polarizability compo-nenS,•~yy-3/2 an 312 -l
nentsa A-3/ and A , are presented in Figs. 100 and 101 [79].

Except for the cross, one sees very similar values for the various shapes.
Since values for the ellipse are almost identical to those for the rounded-

off rectangle, the curve for the ellipse is omitted.

The normalization factor A used in Figs. 99- 101 is very important

in practical applications because of the fact that with the exception of

aMxx for the cross, the normalized polarizabilities of various apertures

are nearly the same as those for an ellipse. Hence, one may employ the

simple formulas in table 14 for the ellipse to compute the polarizabilities

of other shapes (except a of the cross), if the normalization A3/2 is

used.

Latham [83] has noted that foi an elliptical aperture, the electric

(imaged) polarizability normalized by the ratio A2 /P, where A is the aperture

area and P is its perimeter, is

P 4 (127)
A2 -e 3(1

independent of the eccentricity of the ellipse. Latham also points out that

a useful empirical formula for a /(A2 /P) for a rectangular aperture ism ,yy

P myy c- (1+0.55 w/I) (128)

When w/4 < 0.5, (128) differs from an accurate numerical solution by less

than 3%.

Jaggard and Papas [84] have proposed the following bounds for simple

apertures with small eccentricity, which is defined to be (1- w /2•,
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2 3/ 2I16 -- < 129)311P <-\)e(-.

16 \3/ <0<> < 16 (130)

where <a > (a + a myy)/2. \
M M'XX)/5Z.

b. Simple Apertures of Moderate Electrical Size

If the frequency of interest is sufficiently high that the largest

dimension of the aperture is no longer a small fraction of the wavelength,

then the dipole-moment approximation is no longer valid. Fortunately, in

most EMP applications tiis situation is relatively rare because of the band-

limited nature of the EMP and the physical sizes of the systems of interest.

b.1 Circular Aperture

Fig. 102 shows the aperture electric field distribution for a circular

aperture of radius 0.25X for normal incidence [85]. Some comparisons with

experimental results [86] are also given in the figure. Fig. 103 shows

the penetrant electric and magnetic field along the axis of a circular

aperture. The fields computed by the dipole-moment approximaticn are

also displayed in the figure.

b.2 Slots

Long and narrow slots can be approximated in many EMP applications by

infinitely long slots, if the observation point is not near the slot ends

or near a point at which the slot field has a null. For TE illumination

(which is more important than TM excitation) of an infinitely long. narrow

slot in an infinite ground plane (Fig. 104) the electric field E in the

slot is [87]

Ex(x,O) = 1 n kw8)+ kx E (131)
2(-kw/2)2- ()2Wz

I.
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Fig. 102. Electric field distribution in the aperture of 0.5A diameter

for normal incidence.
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Fig. 103. Penetrant electric and magnetic field for an aperture of 0.5A

A diameter and for normal incidence.
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where Ikw << 1 and r 1.78107 is Euler's constant and w is the slot width.

_ At a distance p from the slot axis large relative to slot width w and small

relative to wavelength X, the magnetic field H is

hee (p,I 0 £n(rkw/8) + j•r/2 (fe+jg/4) + j(kw/16)f E sc,z/Z (132)

•-• ~wh e re

fe IZn (fl 1 )w sin 2 ( sin *)4

(133)

For a finite-length narrow slot maximum penetration occurs when the

slot length is near X/2 or an odd multiple thereof, and when the magnetic

field of the excitation is directed parallel to the slot axis and is an

ground plans

W

P z
slot

z=O

Fig. 104. Infinite slot in a ground plane subject to TE illumination

(cross-sectional view),
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even function relative to the slot center. Strong penetration also occurs

through slots whose lengths are multiples of one wavelength when the axially
directed magnetic field possesses a rich odd-function component. Such "worst

case" data can be derived from the dual results available for thin wires.

As an example illustrative of the EMP field passing through a finite-

length slot, H ct) is selected to be constant along the slot axis with
sc ,y

the double exponential pulsA time variation shown in Fig. 105a. Fig. 105b
displays the time history of the electric field Ex(t) at a point two meters

behind the plane and passing through a 155 cmx 1.3 cm slot.

2.1.3.2.3 Hatch Apertures

Examples of some hatch apertures of practical interest are shown in

Fig. 106, each of which represents a narrow slot of width g cut in a thin,

perfectly conducting plane. In all cases, g << Z, g << w, and g << d.

Figs. 106a and 106d might represent a 'covered" access hole or doorway,

while Fig. 106b might be a circular access hole with a cover hinged on one

side (at y = -d/2) and latched on the other (at y - d/2). The example of

doors, while Fig. 106c might represent the cover of a missile silo.

Polarizabilities for the hatch apertures of Fig. 106 are given in

[88,89], and simple formulas for these polarizabilities are summarized in

table 15. One should note that the presence of the hinge and latch in

Fig. 106b has negligible effect on amyy' while it does modify a and
mpyy M,xx

(e as is seen from a comparison of the polarizabilities of the apertures

of Figs. 106a and 106b. Similarly, the presence of the center slot in

Fig. 106e influences only am xx

Closed doors and covered access holes often are sealed by means of

conducting gaskets that can reduce the penetration of electromagnetic energy.

The presence of the gasket can be accounted for in the determination of the

polarizabilities [88,89], and the resulting polarizabilities of gasket-sealed

hatch apertures are listed in table 16.

j
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Fig. 105. (a) Waveform of the short-circuit field H (t) in the plane;

(b) time-domain behavior of E (t) at a point 2 meters behind

the rectangular aperture.
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. Fig. 106. Hatch apertures..

2.1.3.2.4 Array of Apertures

For a row of periodically spaced apertures as shown in Fig. 107 the

normalized (imaged) polarizabilities •e' c--mxx and •my are given by [83,90],

with the x,y-axes being the principal axe~s of the apertures,

=e 1 (134)

dd

1 I(e

.. o1........ d (35

....... 1...
...... .... .....

II
Fig. 06. atchaperures
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1yyy (136)
M, yy (a)

mo yy 4(3) (moyy
f d3

Here ao (ao) and (a are the polarizabilities of one isolated aperture

in an infinite ground plane, and C is the Riemann zeta-function and r(3)- 1.202.

If there are only two apertures, one simply replaces 2ý(3) with unity in (134) -

(136). A comparison of the simple formulas (134)- (136) with the numerical I
results of Fig. 108 [91] for the case of rectangular apertures shows that

they are accurate to within 5% for (aperture-aperture separation) > 2 times

(aperture's maximum linear dimension).

2.1.3.2.5 Apertures With Impedance Loading

Loading au aperture with a sheet impedance or coating the conductor

containing the aperture (Figs. 109a,b) will change the aperture's polariz-

abilities. The relation between the magnetic (imaged) polarizability a ofm

a loaded aperture and that of the same aperture without impedance loading

amo is approximately

•.[Fig. 107. A row of periodic small apertures.

iii
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W rndonce-Iooded jilcrc
grun planeIi

(a) lane

Fig. 109. (a) An impedance-loaded aperture in an infinite ground plane;

(b) a hole in an infinite ground plane sandwiched by dielec-
tric slabs.

+_js a 1+ %mo (137)
s

in which Z denotes the sheet impedance of the aperture loading material, ands

L is the "equivalent" inductance of the unloaded aperture and given approxi-a

mately by

La=o (138)
a o P

for apertures of small eccentricity, where A - aperture area and P = aperture

perimeter.

The factor by which the magnetic flux linking the aperture is reduced

by the loading is the same as that given in (137) above, except that the

factor 2/(30) is replaced by 1/4.

The geometry of a dielectric-backed and dielectric-coated conductor

containing a circular aperture of radius a is shown in Fig. 130. The dielec-

tric backing has relative permittivity el and the coating has relative
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free space

\C 0d~t{ - 2o- - 'Era

dieeti backing

Fig. 110. A dielectric--coated and dielectric-backed circular aperture in

a ground plane.

permittivity se. and thickness h. The region above the coating is free space.

The electric (imaged) polarizability of the aperture ae is given by [92]
fe

2Erl

ae 2Crl -F(•e e h/a)o (139)
e CE:+ Cr rl Cr23 h/a o

in which a is the electric (imaged) polarizability of the aperture in the

conducting plane when Crl = Cr2 =1 . In the limit as h 0 0, F + (Crl +r 2 )/

(Crl+1), so that

lim Ce =( lC eo (140)h +ý 0 e ~ rl e

and when h + =, F 1 1, so that

lim ae a (141)
h +\
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The ratio a e /aeo is shown plotted as a function of h/a for various values of

e rl and Lr2 ilt Fig. 111. It should be noted that when (h/a) > 1, the result

given in (141) is quice accurate.

2.1.3.3 Metallic and Advanced Composite Walls

The transfer-function relationship between the tangential field compo-

nents Eto and Hto on the outer surface of a metallic or advanced composite

wall and the field components Eti and H on the inner surface of the wall

is of the following form (Fig. 112)

4- +ti 11 BI2 to

zi-L÷(142)
SLti, .21 B22 HtoJ

The matrix of dyadics in (142) is a "boundary connection supermatrix" [93].

Its dyadic elements Bij can be written as

B B

11 21n
B -- B (143)

22 22

in which the parameters B depend upon the structure and composition of

the wall and t is the unit vector normal to the wall and pointing into the
n

"inside" region bounded by the wall.

L luivalent electric and magnetic surface current densities located on

the inner surface of the wall are often useful in the calculation of the
fields penetrating the wall. These source densities can be considered to

radiate in free space, or the wall can be replaced by a perfect conductor

with an impressed magnetic surface currLnt density (in the latter case it

is not necessary to consider the electric current density). The original

problem and its equivalents are shown in Fig. 112. The equivalent surface

densities eq a nd 1JMe are
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Fig. 111. Normalized electric (imaged) polarizability for various erl
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iI

I eq - nXit

B + B x (144)

21lto 22%x Ato

mseq nlt

1B1 tlh o B12 Hto(15

Srinal problem (z) outer' surface Et'( o) to.t

•'•,/// • /i./////,7:- wai

d Zin inner surfaeEiHt

equivaWlnt problem: currents radiating in free space

(Zo)

"J'..o-- x Etj

equivalent problem: currents radiating in the preisene o a perfect conductor

CD)//

Fig. 112. The imperfect-wall penetration problem and its equivalent

problems. The fields in the interior region are identical in

each problem.
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In most problems of interest, the wall is a good conductor, so that J

m are related to H+ being the short-circuit field on the outside
m, eq H5 3  e in the on I
surface of the wall. In these cases, J and J can be written in terms

eq M,eq
of the short-circuit surface current density s -n xic as

se ni sc
4 T .J

eq ce sc

(146)

T - J
mleq cm sc

in which

Tce ¢(147)

T Z T~s 17

m- 0 Z n

and the transfer function T (S) is

Tc (s) - (BII - ZoB 2 1 )- (148)

The analysis and results presented here are based fundamentally on the

assumption that the wall under consideration is physically thin in comparison

to its local principal radii of curvature. Eqs.(146) and onward are valid
for walls which act as "good" &hields, so that the approximation Hto = H sc
holds. This is the case in nearly all practical applications. It is also

assumed that the medium on either side of the wall is free apace.

2.1.3.3.1 Homogeneous Conducting Walls

The boundary-connection parameters Bil for a solid conducting wall of

thickness d, conductivity a, and permittivity p, are

B 11 B22 'B cosh/ sd

B12 Rfs-Td sinhs-,d (149)

1 sinh r-T

B I dB21 = R v;d

d
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where R - (ed) denotes the dc resistance of the wall material and Td pd

is the diffusion time constant. The transfer function T (s) is then
C

Z sinh dT 1
T (s) -(cosh Vs-d + R ) (150)

A useful approximate expression for T (s), valid with negligible error over

the entire EMP frequency range, is

(S) R sd cschvsF (151)
c Z0  d d

The magnitudP and phase of the functiolL (Z /R)Tc are shown plotted as a

function of fT d (where f is the frequency) in Fig. 113a. When 2 rfTd >> 1,

- dd

(152)
arg Tc Af T

c 4 d

The inverse Laplace transfo-m of Tc (s), from which the impulse responses

of the equivalent surface current densities are readily obtained, is [94]

2 22Rt ) M o e (t > td

S2-R- - 'R 2 t/ dd -472t/T d -9)2ti d)

d4e +9e /, (rd/20<t<Td) (153)

R WT -5/2 e d (t < Td/20)

A plot of (ZoTd/R)tc(t) as a function of t/Td is shown in Fig. 113b.
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conducting solid walls, and (b) (Z oT d/R)t c(t) versus t/Td for

imperfectly conducting solid walls - te impulse response.
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Eq.(150) is valid whenever the wall material may be considered to be a

good conductor, i.e., when the displacement current density can be neglected

in comparison to the conduction current density: 2wfoo/a << 1. Eq.(151) is

valid if Z >>R, Alfe 0 /a << 1. The relative error in (151) is less than 0.25%
9 4when f < 109Hz and a > 10 Wio/m; the relative error in (150) is completely

negligible under these conditions.

Eq. (153) describes the time history of the impulse response of the

equivalent surface current densities within a relative error of 0.1%.

2.1.3.3.2 Mesh-Shielded Nonconductive Walls

A mesh-shielded nonconductive wall (e.g., a boron-epoxy composite panel

with a bonded-junction wire mesh embedded in one surface) is completely

characterized for EMP shielding calculations by the following boundary-

connection parameters Bi,

;Bl B2 2

B12  0 (154)1I2

B 1  1/Zh, B~21 " /sh"

The impedance Zsh is the equivalent sheet impedance of the mesh and is given

by I
ZE. 0 a' + 2~- irr/alsh a + 9nIL -2 e (155)Zsh - 27a

C., a n 1 e-21rr/a 1V2

where

i a - mesh size

r - wire radius

Cr - relative permittivity of the panel (typically cr 5)

Z' - impedance per unit length of wiros

SR' (dc resistance per unit length)
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0, for perpendicular polarization (Fig. 114)

1, for parallel polLrization (Fig. 114) I
I surface Laplacian operator

2

-2 sin2 e, for plane-wo-e fields (Fig. 114)
c

In what follows, we consider locally plane-wave fields and write

Zsh Rsh I sLsh (156)

in which (

R as L 10 - si )a(b) 27r 17

Rsh " Ea Lsh "~ 2 qp 1 +---C-ra-

(a)/

Fig. 114. (a) Parallel polarization; (b) perpendicular polarization.
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The transfer function T c(S) is

C R+sLI
T~s) sh s5 h(18

Over the F!P spectrum IRsh /Z + SLsho/Zo << 1, and hence

T~) 1

T (s) (Rsh + sLh) (159)

Frequency-domain expressions for the magnitude and phase of T are
c

(Zo/Rsh)ITcl -i 1+ ( 2 7fL sh/Rsh) 2

(160)

arg Tc = arctan(2wfLsh /Rsh) o

The inverse Laplace transform t (t) of Tc(s) is easily obtained from

(159) and is given by

tc s--h-F 6(t) + Lh a, (t) (161)
0 0

which clearly shows the "differentiating" character of a wall of this type.

Eq.(154) is valid when the mesh sheet admittance is large in comparison

to the equivalent sheet admittance of the dielectric substrate. In typical

cases, the relative error incurred by ignoring the admittance of the substrate

is less than 0.1%.

Eq.(155) is derived under the assumption that the thin-wire approxima-

tion holds with respect to the mesh wires, i.e., that r/a << 1. The error

"incurred by the use of the thin-wire approximation is not precisely known.

It is known, however, that the use of this approximation tends to under-

2 estimate the wire currents, so that the results presented here tend to

overestimate the interior fields [93).
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The assumption that Z' can be replaced by R, over the EMP frequency
w

range is not correct at the upper end of the EM? spectrum. Precise

error analyses are not yet available, but it is estimated that the rela-

tive error incurred by using this assumption is less than a few percent

over the entire EMP spectrum.

Eq.(159) is valid when Rsh/Zo << 1 ad 27fLsh/Z° << 1. These conditions

introduce negligible error over the entire EMP spectrum for practical cases.

2.1.3.3.3 Mesh-Shielded Conductive Walls

The transfer function T (s) for a mesh-shielded conductive wall (e.g.,
c

a mesh-shielded graphite-epoxy composite panel) is

/Z Z sinhV~ -lsd
Tc(s) - i Z sh /sd a (162)
c [(+ Zo/sh) d \(R Zh)/ ,i

In practice, 1Zsh/Zo0 <e 1 and IRyd/Zshi << 1, so that

To(S) o.cosh -l + o (163)
Z -d Rd

which may also be expressed as

1+ p 4- std
Tc(s) T c(0) d (164)c c sinh V~T

cosh 1sTd + (P + UsTd) ) /7d

in which

T (0) 1 +R

R'aK (165)P= R

-21r/a.c -a -- Ln1 - e-2r/)l]2•
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Some representative curves of the magnitude of T /Tc(0) as a function of

fd for various values of p and a are shown in Fig. 115. The larger values
of a correspond to coarse meshes, thin panels, and/or fine wires; the
larger values of p correspond to smaller values of wire conductivity and/or
thick, highly conductive panels.

Relatively simple analytical expressions for the inverse Laplace trans-
form of Tc (s) for a mesh-shielded conductive panel do not exist, except in

the limiting cases which have been described above. One may, however,

construct a series expansion for T dtc(t). One such representation is

100

II

' • ~ ~(p*CI) =(0-100.1) "(.O0)

S1j-I (0.1,0.01)

(1.090.01)

10-2

10-2 10-' 100 101 101

fd
Fig. 115. Magnitude of Tc/TC(0) versus fTrd for mesh-shielded conductive

walls.
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2 2-2un(1 +P - CUn)exp (-u t/T
tdLc(t) T TC(0) d (166)T ou2) sin uU lU -

nl [Cos u + (P-c u )u I
in which the u are the positive real roots of

cos u + (p-au u 0, u > 0 (167)

The series in (166) converges for all t > 0, and for t > T the first term
is sufficient to represent Tdtc(t). When t << Td, the following early-time
representation is useful:

Tdt (t)/T(0) - (t t

2(t/id)2  
_

pq _l+2pt/Td 1 +2qt/hd]

in which

p'q - T (1 ± .l-4pa ) (169)

Representative plots of t c(t)/T c(0) versus t/Td are shown in Fig. 116.

Eq.(162) is analytically exact. Eqs.(163) and (164) are valid when
the conditions IZ sh/Zo0 << 1 and iydR/ZshI << 1 hold, and (164) is valid
when (156) can be used to represent Zsh* For typical meshes and conductive
substrates, (164) is accurate to within a few percent.

Eq.(166) is the exact Laplace inverse of (164). When t/Td > 1 the first

term represents Td t c(t) to within 0.1%, if the root is accurately calculated.
The early-time expression of (168) is accurate to within 0.1%, for t/¶d < 0.05.
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I
i

p=0.1

2.0'
a 0.01

0.1

0.0-
0 Q2 04 0.6 0.8 1.0t/rd

3.0 ,
p=1.0

a 0.01
u2.0-

IY1.0-

0.0I
0 0.2 0.4 0.6 0.8 1.0

t/rd

Fig. 116. Tdtc(t)/Tc(O) versus t/td for mesh-shielded conductive walls.
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CHAPTER 2.2

INTERMEDIATE INTERNAL INTERACTION, 1: LINE CONDUCTORS

Between the first layer of shield (e.g., the aircraft's skin) and

the connector pins of equipment boxes is a region where intermediate

F internal interaction takes place. Within this region there may be

cable shields and other conduits such as hydraulic lines, control

cables, pneumatic ducts, etc. Generically, these may all be referred

to as line conductors. In this chapter engineering formulas and data

will be presented to describe the interaction of these conductors.

2.2.1 COUPLING

The line conductors in the intermediate internal interaction region

may be excited locally by nearby apertures or in a distributed sense by

the field that diffuses through conciucting walls. We will first present

formulas and data to describe the voltage and current sources appropriate

for local excitation by nearby apertures and then the voltage source for

distributed excitation by diffused fields.

2.2.1.1 Line Conductors Near Apertures

*Many EMP problems have to do with coupling through apertures to

line conductors (wires) passing near them. For the low-frequency portion

of the EMP spectrum, the usual approach is to represent the aperture

by equivalent dipole sources. In a rigorous analysis, these dipole

sources would be computed taking into consideration the scattering

from the line conductor back into the aperture. In practice,ift is

usually possible to neglect the scattering from the conductor into the

aperture. In this section results are presented for a line conductor

coupled to a single aperture in an infinite ground plane and to an

array of periodically spaced apertures.

2'.2.1.1.1 Line Conductors Near a Single Aperture

In Fig. 1 is shown a line conductor (wire) parallel to a conducting

shernt with an aperture. The wire and the conducting sheet form a trans-

475



I1

mission line. When the aperture is electrically small, its effects

on the transmission-line mode can be represented by the equivalent

circuit shown in Fig. 2, where the equivalent voltage and current

sources, V and I , are given by [1]

eq eq

-Veq/iX m S.e

(')eq'iiw ro 2) kc~ c
\R 0

(a II

Z1

zI
Y

20

(b)
SRi

Fig. 1. (a) Coordinate system for a line conductor above a ground

plane with an aperture, (b) cross-sectional view.
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and the inductance and capacitance, L and C of the hole by
a a

2
La ox hT2

0 (2)

aCe ( h 2

Ca Voz 2wRK 2
c 0

Here, the characteristic impedance Z of the transmission line and thec
wave impedance Z are

0

Z 20 Zoarccosh(h/a) - Zon(2h/a)

(3)

2a---,,• ,wore

R ~af
hoIa U'3l

FE cSx[ c

Vgq Lo

Fig. 2. Equivalent circuit of a small hole (R >> hole's dimensions).
0
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and the polarizabilities ae, a. for a variety of aperture shapes are given

in Sec. 2.1.3.2.1.

If the principal axes x' and z' of the aperture are not parallel to

the x- and z-axes as defined in Fig. 1, then the aperture magnetic dipole

moments ma must be transformed to the xy,z coordinate system according to 1
-WaM co 3" maz sinema,X 'a z

(4)
ma,z M ,ax' sin 8 + a z, cos

where 8 is the angle between the x- and x-'axes (Fig. 1). Hence, the

quantity I1% a sc contained in Ve in (1), expressed in both prized and

unprimed coordinates, is given by

Ix - " *sc M (amxx cCs 2o + amz' sin B) c) (5)

+ (am,xlx, - %,ZZ,)cos 8 sin 8d1.SC )
and the quantity a contained in La in (2) by

mpxx a m!

2 2I
01 a cos a + a , sing (6)

For most combinations of the parameters w, R and a, the lumped circuit

elements La and Ca of the aperturc may be neglected. It is useful to observe

that the negative capacitance element represents the lumped effect of the

decrease in the line capacitance per unit length which, in turn, results

from the decreased charging surface available because of the presence of

the aperture. The additional magnetic flux paths which penetrate the

aperture increase the line inductance per unit length near the aperture;

this effect is accounted for by adding a positive lumped inductance.

If the wire is so close to the aperture that the effect of the aperture

can no longer be represented by dipole sources, then a correction factor for
the equivalent sources may be used. For a circular aperture, the corrected
equivalent sources are given by [1i
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Veq fs Veq~small holeii (7)

where the factor f, plotted in Fig. 3, merely multiplies the small-

hole source terms defined in (1). It should be noted that in deriving

V the factor f in (7), the influence of the wire on the aperture field
S.

has been neglected, an assumption which becomes less valid as the wire

approaches the aperture. The factor [9/(2R )13 is a reasonable estimate

of the relative error involved in this assumption.

2.2.1.1.2 Line Conductor Near Periodic Arrays of Apertures

In many cases wires are situated near an array of identical

periodically'-spaced apertures. In such situations the influence of

the wire on the apertures may often be neglected, as mentioned in the

previous section, but it is often impossible t ) neglect the coupling

of adjacent apertuires in computing aperture equivalent sources.

However, if there is a sufficiently large number of elements it can

of ten be assumed that the central elements in the array have the

same aperture fields (and, consequently, the same dipole moments, etc.)

as they would have in an infinite array. While it is common to treat

more than seven or eight elements in an array as approximating an

infinite array, there are no simple rules regarding the errors involved

in such approximations, since the errors depend critically on such

widely varying parameters as array spacing, aperture geometry, excita-

tion, and frequency.

For a wire behind and parallel to a linear array of apertures,
an equivalent circuit representing the coupling of each individual

aperture to the transmission line takes the form shown in Fig. 4a

where the equivalent sources and circuit elements are defined in

Fig. 2. The polarizabilities all, am to be used in (1) and (2) must
be those of each aperture in an infinite array environment, and are

given in Sec. 2.1.3.2.1.
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3R

fS h/• 0.1
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1.0, 0.3,, ---

I0 0.5 h/RI

Fig. 3. Effects of diameter X of a circular aperture and height h

of wire above a ground plane on the source factor fs"
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If the apertures of an array are closely spaced in terms of

wavelengths, the analysis of EMP coupling may often be made simpler

by averaging over a period the lumped elements (sources and iapedances)

modeling the apertures and treating these elements as distributed

quantities. Hence the array of lumped elements separated by sections

p of transmission line as shown in Fig. 4a may be replaced by a continuous

transmission line with distributed parameters as shown in Fig. 4b, where

L' - L' + L /d, C' - C' - C /d0 a o a
(8)

eq Veq/d3 eq eq

in which d is the period between apertures and the quantities Las Cat

V and I are defined in (1) and (2) with the polarizabilities taken
eq eq

to be those if an array environment, and L' and C' are the line induc-0 0

tance and capacitance per unit length with shorted apertures.

V L V L

i q I

Veq Vq
-2 + -q +(b

Fig. 4. (a)Transmission line with lumped elements for widely-spaced

apertures; (b)equivalent circuit per section of line for

closely-spaced apertures.
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2.2.1.1.3 Line Conductors Inside a Triangular Waveguide With
Periodic Apertures

A special but important EMP penetration is the leading edge of

an aircraft wing covered by an array of dielectric skin panels which

approximates a periodic array of apertures. The section of wing exposed

to EMP penetration via the panels contains a pneumatic duct and some

unshielded cables inside an approximately triangular waveguide region as
shown in Fig. 5. The interior problem may be modeled as a triangular
waveguide with a center conductor, as far as the penetrant fields are

concerned. An array of apertures is used to model the skin panels,

whose dielectric constant has been assumed to be that of free space.

The exterior problem of determining the short-circuit charge density p
and current density • can be treated by the techniques in Chap. 2.1.

...............

unshielded

pneumatic duct

Fig. 5. The edge of the wing modeled as a cylindrical tube with aJ

triangular cross section and a periodic array of rectangular •

apertures.
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=. j The equivalent circuit of Fig. 4b is most appropriate to describe the

interactiun problem of Fig. 5. The distributed parameters are given

by (21

L' L' + La/d, C' C'- Ca/d

a i

eq d Zo a Z
0

I'- - --J - p(z)
eq d an

where L' and C' are the inductance and capacitance per unit length of
0 0

the transmission line formed by the duct and triangular waveguide,

Zc "- / , and La and Ca are the corresponding lumped element

quantities representing the effect of the apertures on the transmission-

line mode. The scalar potential function 0 describes the TEM mode in

the closed-aperture transmission line. The polarizabilities ae, a are

giveL in Fig. 108 of Sec. 2.1.3.2.

The quantities L', C'o and (a/an)o in (9) have the following

I approximate form

Poe 110 (Do)
0o C' 27 N o

___ (10)
a2 [Cos C sa cos O2a+ cos 3a cos e4a1

an n(N0/D) L a R2a R3a R4 J

where (see Fig. 6)

N R R RRO 10 20R30R40

D ORRRR
o R5060R70R80

R - distance between point i and point j, wherei,J O 0 ,,... 8,a.
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eia I angle between the outward normal vector at point a
and the vector from point i to point a. I

Note that the point a has to be chosen such that (a/an)o at a is 4
approximately the average value of (B/an)o over the aperture.

2.2.1.2 Line Conductors Near a Conducting Surface

When there is a time-varying surface current flowing on one side

of a finitely conducting sheet (such as the metallic skin of an aircraft

or the raceway of a missile), the magnetic field associated with this

current can diffuse through the sheet matarial and appear on the other

side of the sheet. This diffusive field can couple to conductors

lying behing the sheet by electromagnetic induction. In the following,

formulas are given which describe this magnetic-field coupling through

a conducting sheet to a line conductor.

7

I I

I '4
1 / \ Y

II , .
, / ', ,T

Ric
",, "•,s kl.,F,. I',

NIo ,, ',,i•I~~ ___- A- , d\

2 3

Fig. 6. Geometry for the definitions of R and I
484

-~~~~~~ - ----- -1 U



Fig. 7a shows a conductor passing over a plane sheet at a uidiform

height h. The sheet has thickness d, conductivity a, and permeability I
P. It is assumed. that both a and v are frequency-independent. Let a

"time-harmonic current be induced on the under-surface of the conducting

sheet, and the associated magnetic field be As, as shown in Fig. 7a.

The effect of this magnetic field on the transmission line above the

sheet can be represented by a distributed voltage source in the

transmission-line equations, viz.,

dz +1 V' dz

The equivalent circuit representation of the transmission line is shown

in Fig. 7b. The source term V'(s is calculated from Faraday's law to be

- jwji h T (12)

I, (e • h d (b)"

S~Z/ VA(O)

Fig. 7. Coupling if a magnetic field R s through a conducting sheet )
to a conductor. The effects ofCthis coupling can be represented

by a distributed voltage sourre V in the transmission-line

equation fur the conductor-plane cornfiguration.
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where TM is the tangential magnetic field transfer function across the

conducting sheet. It is given by

T1

cosh yd + Z vf/i-i sinh yd0
where

SC- + al/jw, y WA7-e (14)0

At EMP frequencies, one always has a >> weo In this case the following

expressions apply

H ,ajw, 6 (15)

whezt 6 is the skin depth of the sheet material.

Fig. 8 shows a plot of the transfer function T for a conductingm

sheet of thickness 1.5 mm, taken from [3].

2.2.2 PROPAGATION

One idealized model of a transmission line which has found wide

application in the EMP interaction analysis consists of a perfectly

conducting straight wire running at a constant distance over the

surface of an infinite, perfectly conducting ground plane. Electric

signals can be transmitted freely along this line in the form of

current and voltage waves. Their propagation is governed by a pair

of transmission-line equations. The propagation characteristics are

determined by the uniform, distributed impedance and admittance per

unit length of the line.

This section deals with the treatment of certain deviations from

this idealized transmission-line model that are relevant to EMP inter-

action analysis. The discussions here are limited to those deviations

that can be represented by changes in the impedance and the admittance

of the line. Deviations that are equivalent to current and voltage
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sources are treated in Sec. 2.2.1 and Chap. 2.4. The deviations

discussed here fall under the two headings of (1) local discontinuities,

or nonuniformities, in the otherwise uniform transmission-line geometry,

when all the conductors are considered perfectly conducting, and (2)

distributed corrqctions in the impedance and admittance parameters
arising from finite conductivity.

101:
10.6o'r- 2xiO.

• 169 -(aluminum)

IT.I
16'0 -

102_

Io-13 •

16145

I kiz I MHz 100 MHz

Fig. 8. Magnitude of the tangential magnetic field transfer function

Tm for a conducting sheet as a function of frequency. The

sheet has thickness 1.5 mm, permeability ve0 and conductivity

a which is in units of mhos per meter.
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2.2.2.1 Lumped Circuit Elements of Discontinuities

A strictly uniform transmission line is not often found in practice.

Instead, localized geometrical nonuniformities frequently occur along

the length of a line. Examples of such nonuniformities are cable bends,

cable clamps, shield apertures, and nearby conductors. These produce

local deviations of the distributed line impedance and admittance from

their uniform values, resulting in a scattering of the waves on the line.

If the dimensions of the nonuniformities are small compared to a wave-

length, the scattering effects can be represented by loading onto the

uniform line an appropriate equivalent lumped network circuit. Fig. 9shows one example of a nonuniformity and its modeling by a symmetrical

T section. The network is assumed to have zero spatial extension, and

is to be inserted into the uniform line at the location of the nonuni-

formity. The lumped impedance and admittance elements Zd and Yd'

characterizing the nonuniformity, are to be calculated from appropriate

quasi-static electromagnetic boundary-value problems, The calculated

results for some common cable discortinuities, applicable to the EWP
interaction problem, are summarized below.

(a) aperture (b) Zd/ 2  Zd/2
--

0-Coble Yd

conducting
!, J •-"plane 

'

Fig. 9. An example of discontinuity in the cable geometry and its

equivalent lumped network.
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F'2.2.2.1.1 Abrupt Cable Bend [4,5]

Fig. 10a shows a cable modeled by a wire of radius a passing over

a conducting plane at a constant height h. The wire is assumed thin

(a << h). The cable has an abrupt bend through an angle a. Fig. lOb

is an equivalent lumped network circuit representation of the bend.

The parameter Ld is the difference between the total inductance of the

bend cable and that of a straight cable. The parameter Cd is the

corresponding difference in the total capacitance. The normalized

values of these parameters are calculated to be

Ld 4 Cd c

Wh- Pn(2h/a) (a cot a-i), hC- " ,n(2h/a) (I-1 a sc a) (16)
i1

where L' and C' are the inductance and capacitance per unit length of

the uniform line and are given by

/C' £n(2h/a) (17)
0 0 It

The expression for Ld is exact within the thin-wire assumption; that

for Cd is obtained by a variational method and is accurate to within

a few percent.

(b) Ld/ 2  

Ld / 2

h Cd0 T

Fig. 10. An abrupt cable bend and its equivalent lumped

network circuit.
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2.2.2.1.2 Circular Cable Bend [4,5]

Fig. hla shows a cable with a smooth bend modeled by a circular arc

of radius R and angle 0. The cable is of radius a and passes over a

conducting plane at a constant height h. It is assumed that a << h.

This configuration is a generalization of the abrupt bend, and the

latter is recovered in the limit R + 0. The circular bend, however,
is the more realistic cable bend geometry.

The circular bend is again characterized by the bend inductance Ld
and the bead capacitance C d* as shown in Fig. lib. The two quantities

are functions of the four geometrical parameters5 R, 0, a and h. In

[4,5] Ld and Cd are calculated and expressed 1in terms of a number of

rather complicated one-dimensional integrals to be computed numerically.

The computed results are shown in Fig. 12.

The results for L d are exact within the thin-wire assumption. Those

for Cd are obtained from a variational principle and are accurate to within

a few percent.

2.2.2.1.3 CbeClamp [61

-I Fig. 13a shows a model of a common type of cable clamp. It consists

of a thin metallic tube of length Y. and radius b, concentric with the

(a)(b) Ld /2 Ld/2

Td

Fig. 11. A circular cable bend and its equivalent lumped network circuit.
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V 0

V -10 R"2h

Rw4h

( 2oI

-3 0° 60. 120.0

r0

0 -' X RuO "

-2 R h2h

Rw4h I

4-4 I!

h

-6 60g2oe80

Fig. 12. -4quivaent inductance Ld and capacitance C of a circular
S .cable bead of radius R and angle 0 of Fig. 11. The broken

line is for the case of an abrupt bend (R- 0).
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II
cable. The space between the cable and the tube is filled with a

dielectric of permittivity c. The tube is connected at the middle to

the conducting plane by a thin, vertical, metallic strip of width d.

An equivalent lumped circuit representation of the cable clamp

ib shown in Fig. 13b. The inductances and capacitances therein are

given by

4w (a )2 n(b/a)

3(h) 4 arccosh(h/b)L3 = - 2 --arccosh , 4"acm ohhb (18)

L5  Vo (h- Waresiah (-b) I (h -b)2 + (A)2 +id

In practice, the effects of the elements C4 and L5 are often negligible.

The circuit in Fig. 13b can then be simplified to the common form shown

in Fig. l1b, with Ld - 2L1 + 4L3 and Cd- C2 .

(b)

LI LI

!I•L3 L3 L:3 L3

Fig. 13. A model of a cable clamp and its equivalent lumped network circuit.
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2.2.2.1.4 Circular Aperture on Ground Plane [1]

Fig. 14a shows a cable passing by a circular aperture on the ground

plane. The cable has radius a, and is at a uniform height h above the
plane. The radius of the hole is R, and the shortest distance between
its center and the cable is D. it is assumed that the hole is small

(R << D), and that it opens onto an empty, semi-infinite, free space

below the ground plane.

The equivalent lumped circuit for this discontinuity is shown in

Fig. 14b. The elements Ld and Cd are given by

Ld 2h Cd 2h (19)

WD4 n(2h/a) TrD 4n(2h/a)

whcre a and ae are, respectively, the absolute values of the magnetic

and electric polarizabilities of the circular aperture of radius R and

are given by

4 3 2 (3
M e 3(20)

(a• • .-•,w. _=_•(b) !

Ld/ 2  Ld/ 2

TCd

Fig. 14. A circular aperture on the ground plane and its

equivalent lumped network circuit.
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The formulas (19) for Ld and Cd apply also to small apertures of other

shapes. One need only substitute for am and a e the values appropriate
to the apertures of concern. It should be kept in mind that a m is
the aperture magnetic polarizability in the direction perpendicular

to the wire. The polarizabilities of specific apertures are given

in Sec. 2.1.3.2.

2.2.2.1.5 Thin Rib on Ground Plane [71

Fig. 15a shows a cable passing over a conducting plane. The cable

is modeled by a single straight wire of radius a, and at a constant I
height h above the plane. A rib in the form of a thin metallic strip

of breadth b juts out vertically from the plane, at right angle to the

direction of the wire. The rib greatly alters the electric field in
its vicinity, but leaves the magnetic field relatively unperturbed.

The effect of this discontinuity is therefore mainly capacitive. The

equivalent lumped circuit consists of a shunt capacitance Cd (Fig. 15b)

and its normalized value, obtained by numerically solving a pair of

coupled integral equations,is shown in Fig. 16.

2.2.2.1.6 Periodic Discontinuities [8]

Very often, identical discontinuities recur at regular intervals

along the length of a transmission line. Examples of such periodic

i 1a) Mh

h>b

Fig. 15. A thin rib on the ground p'ane and its equivalent
lumped network circuit.
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structures along aircraft cables are periodically applied cable clamps

and periodic airframe ribs over which the cable runs are anchored.

These cables are equivalent to periodically loaded transmission lines.

Fig. 17a shows a uniform transmission line loaded at regular

intervals with identical two-port lumped-element networks. Each load

is taken to have the structure of a symmetrical T section, as shown in

Fig. 17b. It is made up of a discontinuity series impedance Zd and a

discontinuity shunt admittance Yd' The loading interval is denoted by d.

0.4 1 /I
0.3 

a/h O.l

C 0.05

0 .2 - 0 .0 1
.00

0.1-

0.t
0 02 0.4 0.6 0.8 1.0

b/h
Fig. 16. Normalized equivalent capacitance C of a thin vertical rib

d *
on the ground plane of Fig. 15.
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On a uniform transmission line, electric signals can propagate by

means of simple-harmonic currant and voltage waves. On a periodically

loaded line, these waves become modul~pted by the periodicity of the

loading. They then have the general form

4(zt) - uk(z)C-k+ (21)

The wave number k is determined by the detailed structure of the line,

and uk(Z) is periodic in z with the loading period d.

The properties of these waves are contained in the so-called
dispersion relation which expresses k as a function of w. For the

periodically loaded line of Fig. 17, the dispersion relation is,

obtained in the following form

cos icc (1 +L Y YZd cosh(d.'Y-'Z' )(2a d d I(22)
101 I- ...

S(b) Zd/ 2  Zd/ 2I

-Li-

L] Fig. 17. A periodically-loaded transmission line with loading period d.
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where Z' and Y' are, respectively, the series impedance and the shunt

admittance per unit length of the uniform line. Note that k appears

only in the function cos kd.

The graphical method is a powerful procedure for analyzing the

dispersion relation. For the discontinuities shown in Figs. 10 through
15, one may take

, juC', Z' = juL'

(23)

Yd jwCd' Zd - jwLd

Then the dispersiun relation becomes

cos kd cos 0 (l + a - 0 sin @ (24)

where

d /V-, LdCd CdL'

d2 L'C' ,le"

Fig. 18a shows a plot of the dispersion relation in the (w,cos kd)

plane for a - 0.2 and 8 0.5. The frequency ranges over which the

curve lies between the horizontal lines -1 and 1 are thL passbands,

since they correspond to real values of k. The frequency ranges over

which the curve lies beyond -1 and 1 are the stopbands, since they

correspond to complex values of k.

Fig. 18b shows a plot of the dispersion relation in the (k,w)

plane. One sees readily that w is a periodic function of k. Each

continuous curve corresponds to a p, ssband. Each point on a curve is

a possible mode of propagation. The phase velocity v and the group
p

velocity vg of a mode are given by

p k g Tk
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Thus v is proportional to the slope of a straight line drawn from the I
p

origin to the point (k,w), while v is proportional to the slope of the 4
curve at the latter point. It is seen that at a given w there exists

an infinite sequence of phase velocities, while the group velocity is

unique up to a sign.

8

II

0-

0 2 4 68 0 Iw 21r 31r

(a) wdfL'C' (b) kd

Fig. 18. A plot of the dispersion relation of a periodically-loaded

transmission line of period d on the (w, cos kd) plane in

Fig. 18a and on the (k,w) plane in Fig. 18b. The shaded

areas in Fig. 18a are the passbands and each continuous

curve in Fig. 18b rt-presents a passband.
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2.2.2.2 Distributed Impedances of a Wire Over a Finitely Conductin&
Surface

Many cable runs in the interior of an aircraft, a missile, or a

large communication system are routed over flat conducting sheets, of

which the aircraft skin, the metallic floors, ceilings, and bulkheads

are exaples. Wen all the conductors can be assumed perfectly con-

ducting, the detreintion of the propagation characteristics of such

Scable syetem i. the subject of standard transmission-line analysis.

This section deals with the ccrrection to the propagation parameters

when the mtallic sheets are no longer assumed perfectly conducting.

In Fig. 19 is shown the configuration of a single straight wire

over an infinite, flat, nonmagnetic, metallic sheet. The wire is

perfectly conducting, of iadius a, and located at a height h above

the sheet. The sheet is of thickness d, conductivity a, and perme-

ability ot . It is assumed that a is both uniform and frequency-

independent.

In the limit of infinite sheet conductivity (a = ), the series
impedance Z' and the shunt admittance Y' ppr unit length of the

V j
finitely-conducting plc'ne

Fig. 19. A cable passing over a finitely-conducting plane sheet of

conductivity a and thickness d.
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transmission line, as depicted by the zonfiguration of Fig. 19, are

-i 0 z (jh) Y' 2itiwe/An ( 2-h), (h >> a) (26)

When the sheet conductivity a is finite, the electromagnetic fields

can penetrate into the sheet material as well as leak into the space
below the sheet. These effects bring about a distortion of the fields,

so that a longitudinal electric field component appears. As a conse-
quence the fields above the sheet are no longer purely TEM. The wave

propagation is damped to a certain extent, since electromagnetic energy
Is irreversibly lost through heat dissipation in the sheeý material.

In this case the variation of current and voltage along the line is

still described by the source-free traasmission-line equations (11);

but the impedance and admittance parameters Z' and Y' must be corrected
for finite sheet conductivity. It is found that from the solution of

an appropriate boundary-value problem, Z' and Y' are given by [9.10]

Z' R' + JwL 1 1 Rf (27)s eff, ef

where

L'ff ý° L [2n(2)+ A]

4n11

C' U o 7r (28)
eff 2 Yn ( 2h - A

R'(A) - (29)4o7c-wA, R' " (29)411p 4 rrs

The dimensionless quantity A is given by

1 - (30)

which completely contains the effects of the finite sheet conductivity.
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The results in (27) - (30) are valid down to frequencies at

which the skin depth 6 becomes comparabl.e to the sheet thickness d.

For the aluminum aircraft skin, d is typically of the order of I

millimeter. The results are therefore applicable down to about 10 kaz.

To investigate the behavior of Z' and Y' below 10 kHz, one has

to take into account the finite sheet thickness d. The boundary-value

problem becomes considerably more complicated, and no quantitative

results are as yet available in the literature.

2.2.3 PENETRATION

In this section EMP penetration through an imperfect tubular

shield is treated. The penetration can proceed by way of two physical

mechanisms: (1) diffusion through the imperfectly conducting shield

material, and (2) leakage through the shield apertures. The determina-

tion of these two penetration effects for the tubular geometry is of

major concern to the analysis of cable shields. In this connection it

is dealt with fully in Chap. 2.4, which discusses cable interaction.

The present treatment is therefore limited to consideration of (1) EWP

diffusion through cable conduits (distributed penetration), and (2)

aperture penetration at conduit junctions (local penetration).

2.2.3.1 Cable Conduit

Important cable runs in certain aircraft are shielded electro-

magnetically in special conduits. The conduits are essentially metallic

tubes with diameters ranging from 1 to 3 cm. The conduit material is

commonly a type of ferrous alloy or aluminum. The electrical conduc-

tivity of ferrous alloy is about that of steel ( 10 7mhos/meter) and

its permeability has a high value, of the order of 10 . The electrical

conauctivity of aluminum is 3.54 x 107 mhos/meter and its permeability

is 10

A cable conduit is usually modeled by an infinitely long and

apertureless cylindrical shell as shown in Fig. 20. The shell material
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is characterized electromagnetically by the constant and uniform

conductivity a and permeability v. The inner radius of the shell is

denoted by b, and the outer radius by c. The cable shielded within

the conduit is modeled by a single conductor and represented in Fig. 20

by an infinitely long, perfectly conducting, and nonmagnetic cylinder

of radius a, concentric with the cylindrical shell.

Let the total EMP-induced current in the entire conductor system

(shield and cable) be denoted by •. This current is assumed to have

only a z--component and to be axially symmetric. It consists of a core

current I flowing in the inner conductor and a shield current I s

flowing in the shell

It = I + 1 (31)

Let V be the potential of the inner conductor relative to the shield.

Then, for harmonic time variation ejWt the propagation of V and I is

governed by the pair of transmission-line equations (11), namely

dz + Z'I - Ez (b)

(32)

dl + Y'V - 0
dz

conduit

cable

Fig. 20. Model of a cable conduit as a tubular shell.
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where Z' and Y' are given by (26) with 2h replaced by b. The term

E (b) on the right-hand side of (32) is the z-component of the electric

field on the inner surface of the shell (p - b). Its presence in the

equation is due to the finite conductivity of the shield, and is given

by [11- 13]

E (b) - - Z'I + Z'I (33)zi T t

where

k Yo(kb)Jl(kc) - Jo(kb)Yl(kc)

i 2rb-- J1 (kb)Y1 (kc) - Yl(kb)J 1 (kc) (34)

ZrT - k J1 (kb)Y 0 (kb) - Yl(kb)J 0 (kb)
T W - 21ca J (kb)YX(kc) - Yl(kb)Jl(kc)

with k - -V'-jWi, and J , Yo, etc. denoting Bessel functions of the first
0 0

and second kinds. Z' is referred to as the internal impedance per unit
length and Z' as the shield transfer impedance per unit length.

T

Substituting (33) into the first equation of (32) one obtains

dV (6
d-V + (Z' + z!)I ' (36)

The effects on the transmission-line equation due to the finite

conductivity of the conduit shield consist of a correction to the

series impedance Z' and the appearance of a distributed voltage source

term ZTI The transfer impedance ZT' is completely determined by theTtT
frequency and the shield material and dimensions. For a highly
conducting shield the total current It is, to a good approximation,

given by the EMP-induced current on the outer surface of a perfectly

conducting cylinder. Eq.(36) and the second equation of (32) jointly

describe the excitation and propagation of voltage and current distur-
bances within the conduit as a result of EMP diffusion through the

conduit.
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The transfer impedance Z' is completely defined by (35); but forT
EMP shielding analysis a simpler asymptotic formula suffices. This

formula obtai.ns when the skin depth 6, defined in (15), of the shield

material is much smaller than the shield radius. When 6 << b < c, (35)

reduces to

SR' d
T dc sinh yd

(37)

d~c I Id'¶

where R' is the dc shield resistance per unit length, y is defLiad in

(14), an d - b is the shield thickness. For a tubular shield of

high permeability and radius of the order of 1 centimeter, the formula

(37) is valid down to about 1 kHz; for a nonmagnetic shield it holds

down to about 10 kHz.

Defining the amplitude A and the phase $ such that

Yd
T Yd Ae (38)
dR s inh yddc

one finds that

A- 2d/6
S~ A = d6(39)

Acosh(2d/6) - cos(2d76" ()

Sd sin(2d/d)
d _ arctan 2d/ (d/6 (40)4 t e - cos(2d/6)

Thus the transfer impedance is a function of the ratio d/6. The depen-

dences on w and p are absorbed into that on 6. Fig. 21 is a plot of A

and $ as functions of d/6. It is seen that for d/6 >> 1, as when the

frequency becomes high, the amplitude A of the transfer impedance is

vanishingly small, and one has
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7( d I
The magnetic permeability I of the conduit material enters the

shielding formulas only through the skin depth 6. A high value of P
decreases 6 and hence enhances the shielding effectiveness. Materials

possessing high permeabilities are the ferromagnets and their alloys.

- fl amplitude

phase

N .9

0

l00 l 1 0

Fig. 21. Normalized transfer impedance ZT' per unit length of

a tubular shield.
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They are increasingly being used in electromagnetic shielding technology.

The high permeability of a ferromagnetic material is due to the existence

of large numbers of microscopic ferromagnetic domains in it that can

easily be aligned in an applied field. However, when the applied field

approaches a certain large value, practically all the ferromagnetic

domains are fully aligned. A further increase in the applied field

strength cannot bring about any more alignment. The ferromagnetic

material is then said to be saturated. Therefore, in a weak applied

field, the permeability of a ferromagnetic material is constant and

large. As the material approaches saturation in a strong field, V.

begins to drop towards p 0 . Thus saturation, or even partial satura-

tion, renders a ferromagnetic conduit less effective in shielding
external electromagnetic fields.

The shielding analysis carried out in this section is valid only

for an unsaturated shield. Its extension to include the nonlinear

effects of saturation consists in accounting for the dependence of Vi

on the magnetic field. This analysis is a nonlinear boundary-value

problem, and involves considerable mathematical difficulty. The problem

9! is further complicated by the occurrence of hysteresis, making pi a

double-value function of H. As a consequence, the theory of ferromagnetic

shields is not yet fully developed. Some early attempts on the problem

can be found in the recent literature [14,15].

2.2.3.2 Conduit Junction

A typical cable conduit is made up of several segments. In some

cases, two adjacent segments are joined together end-to-end by means

of a connector. In other cases, the segments are simply welded together

or mated together through screw threads. These different kinds of
connections have a certain degree of imperfection which gives rise to

local WH penetration. In this section the discussion will be limited2 to penetration through conduit connectors. Fig. 22 illustrates the

principal components of a conduit connector. In the connector the

matching ends of two adjacent conduit segments a~re joined together
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inside a coupler. The coupler is a broad metallic ring which fits

snugly over the ends of the conduits to be joined. When the two outer

rings of the connector are tightened, two coils of fine flexible spring

are pressed against the ends of the coupler and the conduits, thereby

sealing the narrow apertures between the ends of the two conduits.

At EMP frequencies, penetrations through the apertures at the

two ends of the coupler by the electric field and the longitudinal

component of the magnetic field .(directed along the axis of the conduit)

are entirely negligible. These two field components are severely

attenuated as they enter the coaxial region between the coupler ring

and the outer surfaces of the two conduit segments. The distance of

significant penetration is of the order of the clearance between the I
coupler and the conduit. By making the clearance small and the width

of the coupler large, these two field components can be effectively

blocked. However, the penetration by a transverse external magnetic

field is a different matter. An example of such a magnetic field is

outer
ring coupler coil of

spring

aperture A ,,,-cable

........ ................ ------------------ ------------------------- --------------------tt ---------------------

fillcon~iit segments

Fig. 22. Principal structural elements of the cable conduit cormector.
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that generated by EMP-induced axial skin currents flowing on the outer

surface of the conduit. This transverse magnetic field couples into

the conduit interior through the circumferential slot A (Fig. 22) and

induces currents on the cables inside the conduit. I
An electromagnetic equivalent of the conduit connector shown in

Fig. 22 is given in Fig. 23. It incorporates the essential electro-
magnetic shielding features in the connector design. The two spring
coils, which are made up of extremely fine and closely packed turns
of wire, are here modeled by two equivalent imperfectly conducting

annular gaskets. They plug the two openings at the ends of the coupler
ring. Most of the minor aspects of the actual connector geometry,

notably the two outer rings, have been eliminated. j
At EMP frequencies the magnetic field at the internal aperture A

in Fig. 23 can be expressed in terms of three admittances Y5, Ya it
and Yext

H (A) - c Y +int (42)
SC ms Yit +Yext

coupler A coaxial regionScurrWr J'sc A• -/ gsket

Fig. 23. Geometry of an electromagnetic equivalent of the cable
.I conduit of Fig. 22.
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The admittance Ya is the sheet admittance characterizing each of the

two gaskets. It is given by the product of the gasket conductivity

and the gasket thickness A

Y1 (43)

The admittance Yint is the internal admittance characterizing the

small coaxial region between the coupler and the conduit, while the

admittance Yezt is the external admittance characterizing the free

space outside the conduit.

The admittances Yint and ext are found to be [16] I
Sn Jt in U ) (44)Yint " -Z ext Ir k

The magnetic field H (A) given by (42) can penetrate into the

conduit interior and excite the cable within. The open-circuit voltage

Voc induced by this field across the aperture gap A is approximately
given by

-Zc I Zi (45) '

h 1 (45)

ZT " • Ys + Yint + Yext

where h Is the separation between the coupler and the conduit (Fig. 23),

c is the outer radius of the conduit, and It - 2lrcJsc.

The effects of the aperture field H (A) on the cable within the
conduit can be represented by taking the source term in the transmission-

line equations (11) to be I
V -(s ZTIt 6(zzo) (47)•

where zo is the z-coordinate of the center of the aperture A.
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CHAPTER 2.3

INTERMEDIATE INTERNAL INTERACTION, II: CAVITIES

Within the intermediate internal interaction region, which is

defin~ed to be the region between the outermost layer of the system' s

shield topology anid the next inuird shield - usually the equipment

boxes -, there exist line conductors and cavities. Examples of line

conductors are hydraulic lines, control cables, pneumatic ducts,

electrical cables, etc. Data and formulas for their interaction

r properties have been givca in the preceding chapter. This chapter is

devoted to data presentation for cavities, typical examples of which

are aircraft cockpits, avionics bays, wheel wells, and weanons bays.

2.3.1 COUPLING

The sources that excite the caivities behind the surface S

which separates the volumes V 1  and V arise from various kinds of

penetration on S m-1,' as described in Chap. 1.2. Examples of these

sources are shown in Fig. 1. If the sources such as those depicted in

Figs. la -c can be approximated by point dipoles, they are called

localized sources; otherwise, they are referred to as distributed
sources (see Figs. ld- f). These sources have been treated in Sec.

2.1.3 under the assumptions that the surface S m-1mis flat and the

cavity behind it is an infinite half-space, In practice, these assump-

tions will be violated to a certain extent.*, In this section various

modifications of the results of Sec. 2.1.3 will be given when these

two assumptions are removed.

2.3.1.1 Coupling via Apertures

There are various factors that would affect the penetration sources

based on the planar approximation [1]. The most common factors are the

curvature itself, nearby conductors or apertures, a backup cavity, an

be discussed in this section.
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[ LOCALIZED SOURCES

K (a) stub (b) loop (C) hole

DISTRIBUTED SOURCES

(d) wire (e) rectangular (f) diffusion
hatch through walls

I Fig. 1. Typical sources exciting a cavity.
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2.3.1.1.1 Aperture in a Curved Surface

The only problem that has been solved rigourously regarding the effect

of curvature on polarizabilities is that of an infinitely long slot in an

infinite hollow circular cylindrical shell [2]. Let I
a', a' - electric, magnetic polarizability per unit length of an infinite

slot of width a0o in an infinite cylindrical shell (see Fig. 2)

0' , a' - electric, magnetic polarizability per unit length of an infinite

slot o f width ao in an infinite ground plane
-(aeo0)1A

10

8I8x,10" //

Sd= a8O

6x1063
C 2•= d•

o 4XI6 3

0
0 0.2 0.4 Q6 0.8 1.0 1.2d /o

Fig. 2. Curvature effect on the polarizabilities of a two-dimensional slot.
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Then, the normalized polarizabilities 3 and U defined bye m

- a' / at/ a'/
e e eo in m mo

are given by

e - - I fc(d/a) (1)

6cos(x/4)Zn[coskx/4)(f Wx - 1 + 64 (2) m

x2[l + cos(x/4)]

X for x < 1 (3)

192'

The geometry of the problem and the curvature correction factor f

given by (2) and (3) are shown in Fig. 2. The simple approximate

formula (3) is accurate to within 1.5% for d/a < 1 (or the angular

opening o0 < 57.3*), and the correction required is less than 0.6%.

2.3.1.1.2 Aperture With a Backup Ground Plane

A particular static boundary-value problem is solved in [2) to

study the effect of a nearby conductur on the polarizabilities of an

aperture in an infinite ground plane. The aperture is taken to be a

circular hole of radius a and the nearby conductor an infinite perfectly

conducting plane parallel to the plane of the hole and at a distance h

away (see Fig. 3). The normalized polarizabilities U' and Z can be

written as

-E fl -f(h/a) (4)

where the correction factor f is a positive function of h/a and the

normalizing polarizabilities Leo and ao -f a circular hole in an

infinite ground plane are given by

2 3 43 (5)a ---a CL --a(5eo 3 mo 3
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The curve in Fig. 3 is obtained via a dual integral-equation formulation
followed by numerical computation. If the variational principle is j
employed, an explicit expression for f is obtained, namely

p

(e (M (6)
1 + (2/n) P F(nh/a)

n-I

1.0 n

0.8-

o0.6

.fp

0.4

0.2-

•, ~~0.0 .it,n00 0.2 0.4 0.6 0.8 1.0

h/a

Fig. 3. Effect of a nearby infinite plate on the polarizabilities of

a circular hole.
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where

F(x) " arctan(i/x) + x - 3x + 3x/2)kn(l + l/x ) (7)

The expression (6) differs from the correct value by less than 0.03%

for h > a/2 and less than 11% for h < a/2. From Fig. 3 it may be

concluded that if the backup plane is at least one aperture radius

away, the correction required is less than 5%.

2.3.1.1.3 Aperture With a Backup Cavity

The effect of a backup cavity on the pola~izabilities of an

aperture has not been treated to the extent where quantitatively useful
information is available. In the case where the cavity is a long
cylinder with a circular opening in the plane of its flange as shown

in Fig. 4,the effect of the long cylinder on the magnetic polarizability

of the opening can be obtained by a simple manipulation of the results

in [3]. With amo given in (5) as the normalizing factor, the normalized

magnetic polarizability - is given by

a2 m f

fb 1 - -- 1 CrJ2(Cr)/4r()
r

0.33

where Cr denotes the roots of JI( 0, Jl and J are Bessel

functions of the first kind of order 1 and 2, the prime denotes

differentiation with respect to the argument, and the C 's satisfy a
jr

matrix equation [3]. The first two values are -i - 1.84, 2 .33

and C1 = 1.68, C2-- 0.84. The value fb - 0.33 is accurate to

within 5%. Thus, for the geometry shown in Fig. 4 the effect of a

deep cylindrical cavity on the aperture's magnetic polarizabilitv is

33% ± 5%.
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m • -- flange

2a-U

cylindrical tube

Fig. 4. A circular hole backed up by an infinite cylindrical tube. I
2.3.1.1.4 Aperture With Other Modifications

There are other effects, such as nearby apertures (Fig. 5a),

impedance loading (Fig. 5b) and dielectric coating (Fig. 5c), that

may change the aperture's polarizabilities. Formulas for these

effects can be found in Sec. 2.1.3.2.1.

2.3.1.2 Coupling via Diffusion

In EDP shielding problems involving closed conducting shells,

displacement currents may be neglected throughout. Hence, for the

regions outside and inside the enclosure (Fig. 6a) one may write

ex Vex 2 ex
Alex=. - Om - 0

(9)

-*in i 2 in 0
H - Vm V Om . 0

3and within the enclosure's wall one has, in the s-domain,

V x H - (0
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The quantity of interest is the cavity field H or the interior magneticin

scalar potential n. The source term for 4i is either the normalino i41n
derivative (a/an)in_ or 4m itself on the inner surface Si of the

cavity wall (Fig. 6a). These boundary 'values are related to the boundary
ex ex

values (o/an)4) and 4e on the outer surface S of the cavity; the

relationship can be obtained by integrating (10) across the enclosure's

iIII

i NX

, 1*

,I ]

rimpedance- loaded dielectrics

aperture

ground plane

(bground pla (c)

Fig. 5. (a) A row of periodic small apertures, (b) an impedance-loaded

aperture in an infinite ground plane, and (c) a circular hole

in an infinite ground plane sandwiched by dielectric slabs.
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wall. A knowledge of this boundary relationship greatly simplifies the
original two-surface boundary-value problem (Fig. 6a) to the one-surface

.placement currents need to be taken into account, the boundary conditions

between the two sides of the cavity wall are of the form of a "boundary

connection supermatrix," presented in Sec. 2.1.3.3.

For metallic enclosures whose wall conductivity is usually very high,
the true source for the penetrant cavity field is the normal component

of the magnetic field Hin (which is equal to the magnetic surface charge
deasity p divided by po) on the inner surface Si of the cavity wall.

This source can be calculated by a perturbation technique by first
assuming the wall to be perfectly conducting [4,5], It turns out that

%nUnon Si is inversely proportional to the wall conductivity and directly
proportional to the spatial variations of the induced surface currents on So.

0 \iie ex

S.e

Mo

%~ 
."

(o) So (b) s

Fig. 6. (a) An enclosure with conducting walls, (b) a mathematical
configuration in which the volume enclosed by S is equal to

the interior volume of Fig. 6a and the surface S is similar

to either Si or SO0 of Fig. 6a.
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2.3.1.2.1 Cavities With Electrically Thin Walls

For cavities whose wall thickness is less than the wall's skin

depth the boundary conditions across S (Fig. 6b) are given by [4]

a ex . in 1 V2( in _ax)
-n m -n m SýoCA s m -

2where a and A are the wall's conductivity and thickness, and V8 is a

surface Laplacian operator. In practice, one may neglect V 2sin in
2 ex

comparison to Vsm and obtain frow (11) for the surface magnetic

charge density pin

in in R 2 ex
Pm R H V ss (12)

where R =()- is the resistance of the wall. If m is eliminated

in favor of the surface current density J, (12) becomes

in ()tPm -"- R V x i3
m s n 9

where S is obtained by solving an external interaution problem for the

case of infinite wall conductivity (see Sec. 2.1.2).

2.3.1.2.2 Shells of Arbitrary Electrical Thickness

For cavities whose wall thickness is comparable to or greater

than the wall's skin depth the boundary conditions are much more

complicated and are given by [4]

in exv in +ex

n sV m m

where
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2 s _____2

S1L14~ 0Cr anh(Vsi7d/2) (5

VAtanh(V- /2)

comparison to V x $and (14) and (15) give

in 1 .V 1(6

where~ ~ ~ th trnse imeaceZTi

ZaR d (17)
2sinhvT 

(

d

and is plotted in Fig. 21 of Sec. 2.2.3 and Fig. 1 of Sec. 2.4.1.

2.3.2 PROPAGATION

Electromagnetic energy can penetrate into a cavity either through

apertures in the cavity surface or by means of diffusion through cavity

walls. Engineering formulas and data for excitation of cavity fields

by apertures are given in Sec. 2.3.2.1 and by diffusion in Sec. 2.3.2.2.

2.3.2.1 Cavity Excitation via Apertures

Although electromagnetic penetration through an aperture into a
cavity is a problem of great practical interest, quantitatively useful

results exist only for a few simple cavity-aperture geometries because
the general problem of calculating the interaction between aperture

and cavity is very difficult, if not impossible, to solve. However, if

the cavity-aperture problem can be separated into two independent problems,
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namely, (a) the aperture problem in an infinite ground plane and (b)

the cavity problem with given aperture field, then the amount of
information on the cavity excitation via apertures can be greatly

increased. Under this decoupling approximation the results of

Sec. 2.1.3.2 on the aperture problem in an infinite ground plane

serve as input to the cavity problem which is relatively easy to

solve, since methods to calculate the cavity field distribution with
known aperture field are well developed [6- 10].

In the following, results derived under this approximation are

presented as well as results obtained without this approximation.

2.3.2.1.1 Parallel-Plate Cavities

a. Small Apertures in the FroutPlate

Electromagnetic penetration into a parallel-plate region through
an electrically small elliptic aperture has been investigated in
[11,12], in which the aperture is replaced by point dipoles with

4+ +polarizabilities e and am appropriate to an elliptical hole (see

Sec. 2.1.3.2.1). The geometry is shown in Fig. 7 where the x-axis
is parallel to the major axis of the elliptic aperture. Figs.8a-d
show some typical normalized time-harmonic data indicative of the

behavior of the penetrant field. The data are applicable under the

following conditions:

(a) linear dimension of aperture << plate separation h, wave-
length X, and the distance between the aperture and the

field point;

(b) Ih-nX/2j > X/20, n - 1,3,5,7,....

Although the results presented are for the elliptic aperture

case, the curves shown in Figs. 8a- d also apply to small apertures
of any shape, provided that suitable polarizabilities are used.

b. Long Slot in the Front Plate

A slot with length much greater than its uniform width may be

approximated by an infinitely long uniform slot. The problem of an
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infinitely long uniform slot in the front plate of a parallel-plate
cavity excited by an EmP has been treated in [13,14).

The geometry of the problem considered in [13] is shown in Fig. 9,in which the incident fields are assumed to be uniform and h << w << A(wavelength). The following results are obtained for the region
between the plates and jxj > w/2 I

( ) lxi (H) r(jxe - w/ 2 )/hsin(wz/h)

(18)E Es-(Ec) -7( Ix I w/2)/hcos(wz/h) 1
H z sc

aperture
($Mall)

Fig. 7. Parallel plates with aperture in front plate.
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120-n --120

--- imaginary component

khI.kh-l.O

w-8 0

S2.5
u-4 0---0

- ,\2.5
\ L

0 0.2 0.4 06 0.8 ,.0oz/h

SI I * I

) \a--mrl component --120

-1.2 - imaginary component

Q. 0
I! • .0 "* 1

o o0

____6_____0.4-________ -- 40 3

5.00 5.0

'12'0-- 0
0 0.2 0.4 zh0.6 0.8 1.0i;, z/h

Fig. 8. Real and imaginary parts of (a) E (O,O,z)/(Z H ) and
- 3 x oy

(b) E. (,.)/, , where H - k H , (2) and
., Z eZ 8Cnyy CZ
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(c)

real component
120 --- imaginary component -1.2

so hh=.0 -as.

~40 - 2.5--.

"I--

o 00 0.2 0.4 0.6 0.8 1.0
z/h

_ (d)
I I .. .i I "1 - I I " -

---- -real component

--- Imaginary component 0.6
IM kh=l.O

K---- -------- kh 1.0

-80..... 0.4"
2.5 x'•

-4 "% ""~

5.0• "X -180-2.5 
-_

00 0.2 0.4 0.6 0.8 1.00

" ~Fig. 8. Real and imaginary parts of (c) 2Hx(0,0,z)/ii and
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Esc

t
h

z
Fig. 9. Parallel plates with uniform slot in the front plate.

It is seen that in this special case the characteristic length for EMP

pene,.ration is h. Eqs.(18) are found to be useful for an estimation of

the low-frequency EMP penetration through joints of aircraft skin panels.

The geometry of the problem considered in [141 is shown in Fig. 10.

The slot is exc 4
1d by a normally incident plane wave whose electric

field is parallel to the x-axis. It is found that the strength of the

field component E at the slot's center generally differs from that in
'I ~x

an isolated, slo-ted plate. The difference, however, is small if

w < h < X/2. The TEM field in the region between the plates is 1.lotted

in Fig. 11 as function of plate separation h, where h < X/2 in which

case only the TEM mode can propagate.

c. Periodic Array of Rectangular Apertures in the Front Plate

In Fig. 12 is shown the geometry of the problem of low-frequency

magnetic field penetration into the para'.lel-plate region through a

periodic array of rectangular apertures.

The problem is solved in [12] in which an integral equat~ion for

the normal component of the Pperture magnetic field is first formulated

and solved subsequently by introducing a suitable trial function with

an adjustable constant. The normal component of the aperture magnetic

field is, for p >> 2h,
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"H "

z "
Fig. 10. Slotted parallel-plate waveguide.

_ __j-

0.2 10
0.2- 

0'N - r0
"-MI::I 0. 1 - re-a.l/'

0 im0gimaryg,,r-.
* N 0 -I rimagin ..........- ,,,--

,÷ -0 .2-0.1 'w - ,

w=O.OIX W=0.1X

-0.2. -0.4 L ' •
0 1/4 1/2 0 1/4 1/2

h/-)'- hlX--
j

Fig. ii. TEM elecLric field in a slotted parallel-plate guide due I

normally incident wave with E-field transverse to the

slot axis.
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Ky'

H (x,Y, 0) =-y(19)

where

K _____H Sc (20

1 1 - exp(-nffw/p)I (nrnw/p) (0

_ J(nirZ/p)[1 cos(nvk/p)] lT/

which simplifies to

h HI
K 1.3 hH (21)

2J (TO sc

for p >> w and p k. Here, J1 and I are Bessel functions.
0

From the aperture field (19) one findn that the maximum penetrant

field strength inside the parallel-plate region is given byI

maxlH(x)l H scexp (-27rlx/p) (22)1

xI
...... ...

X .. ..... .....No .....

Fig... 1.. Prle.pae.ih. eidc ra fretnu

aperuresin te frnt pate

WI
.. .. .. .
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for lxi > w (Fig. 12), and the maximum penetrant magnetic flux density V'

per unit length is given by

2
maxf (x)I 1--hHsexp(-2nixl/p) (23)

4 sc

2.3.2.1.2 Infinite Circular Cylindrical Cavities

a, Magnetic-Field Penetration via an Aperture

The degradation in magnetic-field shielding due to the presence of

an aperture in a long hollow conducting tube (Fig. 13) is studied in

- $ k-'

(a) top view (b) side view
-dge of aperture

6x1o.
-Itheoretical values

, "I

0i i I ,I" I

(c) z(cm)
and (b) Small aperture in a long cylindrical shell

immersed in uniform axial magnetic field i•i(t), and (c)
peak-to-peak ratio of -H (a,0,z,t) to Hi(t) along the

cylinder's axis for a - 16.5 cm, ro - 5 cm, and HA(t)

texp(-cit) with c= 106.
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[15,161 which contain a comparison of experimental data with theoretical

data, the latter being obtained from the solution for an infinite plane

with a circular aperture. The excellent agreement can be attributed

to the fact that the dimensions of the aperture are small compared to

the tube's radiu., and the distance between the aperture and the field
point, and that the tube's radius is only a small fraction of the

important spectral wavelength of the incident field.

b. Long Slot in a Long Circular Cylinder

The geometry depicted in the inset of Figs. 14a,c is the cross

section of an infinitely long circular cylinder with an angular opening

of 2ýo. The electric field vector of the incident plane wave is parallel

to the cylinder's axis and the incident wave has a zero phase at the

cylinder's center. Figs. 14a,b show the angular variations of the

aperture field for half-angles 00 = 100 and 30' and for various values

of ka. The field at the aperture center is plotted in Fig. 14c as a

function of ka for two opening angles, ýo = 10* and 0o = 30*° NoteI

the dramatic effects of the interior resonance near ka = 2.4 [17].

Figs. 15a,b show the electric field variation along the cylinder's

radius from the aperture's center to the cylinder's center for various

frequencies [17]. The dramatic increase in interior fields can be seen

for the wider aperture and for frequencies near the interior resonance.

Fig. 15c is a plot of the cavity field magnitude at the center of the

cavity as a function of frequency. Again, the effect of resonance is

seen to be quite dramatic.

A plot of the first interior complex resonance frequency as a

functioii cf the aperture half-angle o can be found in Fig. 16. Although

any opening of the cavity will chift the resonance frequency, the effect

is quite small for 0 l i0* but increases rapidly with increasing 00"

In the case where the wavelength of the incident wave is much

greater than the diameter of the cylinder, one may use an electro-

static boundary-value problem to find the low-frequency penetrant field.

¶ For the field polarization shown in Fig. 17, the penetrant electric and
magnetic fields at the center of the cavity take the simple form
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I l ' I

= 2.3 ka=2.3

0.6 3

-0.4-0 2

4. 1. ,

w w 1.5

0.2 I .0

,0 0.5.
01

0 0

(a) bd )

4.0

II 300

' 2.0-

h • o30o

1.0 I

I i

2 ka, where a is the radius of the cylinder, (b) aperture field

for 00 30' and various values of ka, and (c) field amplitude

at the center of the aperture for half-angle~ 10' and 30*.

The axis of the cylindrical shell is parallel to the z-axis.
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04ka=22'a 40-E i T

2.0

0.5.
(a)8.0 p/1 (b) .p/a

1.0 0.5 0 1.0 0.50

6a P0 (b)J-. *1
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2.0 O I
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Fig. 15. Variation of interior field along 0' O with ka as parameter

for (a) 100, and (b) -30', and (c) field at the

center of the cavity versus ka for 00 100 and 30'.
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• :2.4

300 -2.3

. 1 12.2
-0.2 -0.1 0

Re(sok)
Fig. 16. First interior complex resonance frequency for 0 <ýo 4 400g.

where a is the radius of the cyliaider, c is the vacuum speed
of light, and 2•o is the angle of the opening.

0.8-

4J

-Ar

-~04-

0

0,, ......... ....,.

Fig. 17. Static penetrant fields at the cenLer of the cylinder versus

aperture opening.
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E(O) H(O sin4(4,/2) (24)
1 ~i H i0

which is plotted in Fig. 17.

In the case where the cylindrical shall has N slots periodicallyI
distributed around its periphery (Fig. 18), the low-frequency penetrant

field at the ceriter of the cavity is given by [18]

Ei (0 An(l/ka) (5

where F is a function only of No 0/7T, 0 being the half augular opening of
one slot. In Fig. 18, F is plotted versus9 No /r.

CWV

'F
01

00.20.4 0.6 0.8 1.0

Fig, 18. The function F versus N40 /7r, N being the number of apertures

or strips



2.3.2.1.3 Simply-Connected Cavities

a. Circular Aperture in the Wall of a Spherical. Cavity

The geometry is shown in the inset of Fig. 19 where the circular

aperture is cu.ntered about the polar axis and the angle 20 specifies
0

the angular opening of the aperture. A time-harmonic plane wave is

traveling along the negative z-axis and polarized with its electric

vector along che x-axis.

fields are shown along the sphere's diameter from the center cf the

aperture to the back of the cavity 119]. In addition to the solution

obtained by solving the exact equations numerically, three different

approximate solutions are given. In the approximate solution A, the

aperture electric field distribution is assumied to be that of the

incident field but with an adjustable amplitude. The interior fields

are then represented in terms of cavity modes whose coefficients are

computed from mode matching. The adjustable amplitude is determined

from the continuity of the magnetic field at a chosen point on the

aperture. In the approximate solution B, the Kirchhoff approximation

is used and the interior fields are computed from Huygens? principle.

In the approximate solution C, the aperture is represented by equivalentI

dipole moments which are computed as if the aperture were in an infinite

planar sheet. The approximate solutions B and C, of course, do not

take into account the presence of the cavity and hence, as Figs. 19 -22

show, they exhibit no resonance effects.

Theenrgydesiy, j2+ I0~ 2,at the center of the cavity as

a function of ka is shown in Fig. 23 for two aperture openings, 00 101,t

and e -3Q0*. The resonances at kaks 2.75 and 4.49 are clearly seen

and are more pronounced for the smaller aperture. At non-resonant

frequencies, the density for 0. M 3Q0 exceeds that for 0. = 100 by as

much as 10.6

At low frequencies where ka is much less. than unity, tepenetrant

field at the center of the cavity takes an extremely simple form, namely
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0.0 --1

0.02- \
* ka= 1.0

0.0f\1-% t%~ 6~100
0 --

0.2-z

ko 2.5

100

00

S0.1-

0 
.4

01.0 075 Q5 025 0 -0.2 -0.5 -0.75 -L0

aperurecenter bock

Fig. 19. Normalized total electric field along the z-axis for half

opening angle 60 10'~;, exact (-), approximation A (-)

approximation B (--,approximation C (~-)
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yI

ka=I.0

~Q05

N0

I-- 

2

N \

0.14

ID 0.75 0.5 0.25 0 -0.25 -0.5 -0.75 -1.0
qweture centar back

Z /a

Fig. 20. Normalized total magnetic field along the z-axisfrhl

V openin angle e 100; exact (-), approximation A(-)

approximation B (--,approximation C (.)
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Fig. 21. Normalized total electric field along the z-axis for halt opening :

angle 00 30*; exact (--,approxiration , - ),approximation

SB ( .... ), approximation C (--)
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Fig. 22. Normalized total maguedic field along the z-axis for h•lf
I ~opening angle O° - 30w; exact (--), approximation A C---),

approximation B (-..-. ), approximation C (-.-..).
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y I0

FM

k et-+ K54

0 I 3 4ko

Fig. 23. Normalized energy density 0+ iZo•J )/H iE2 as a function

of ka.

Ez(0) (0.(e sin 3 (26)

i \o- s 3
E

for E parallel tn z-axis (Fig. 24a), and

E z ( 0 ) 1 1 ( 0 ) e o s i n -0 s i n 2 0 + s i n 3 ) ( 2 7 )

Ei Hi 2T 2 0 2 0 (27

for Eý and H respectively transverse and parallel to the z-axis (Fig. 24b),

where e6 is the half angle of the aperture opening. Eqs.(26) and (27) are

plotted in Figs. 24a,b as functions of G0.

b. Small Apertures in the Wall of Cylindrical Cavity

Two different aperture locations in the wall of a cylindrical cavity

are shown in Figs. 25a,b. With the technique discussed in [10] simple

formulas can be obtained for the penetrant quasi-static rmagnetic field

at the center of the cavity.
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0.2-

0

.0

00 200 400 60* 800 1000 1200 1400 16001800

90

Fig. 24. Normalized static penletrant field at tli~e center of a spherical

cavity with a circular 8perture for (t) E parallel to the
polar axis, and (b) transverse and H pr.rallel to the
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(a) For k >> a (Fig. 25a) the low-frequency penetrant magnetic field
at the center of the cavity for an aperture at (po,0,0) is

given by

a p

+ 7.52 _-• 0 22/(2a) "t+ s

z'-- 1( C02'o/a)I x a m c (28)
a

where P
A 11 JI(rllp,/a)ix"+ m sc

(0) --- --IaX O W

£I I
HýII

(b t- . "-~j2

Fig. 25. A cylindrical cavity with a small aperture in the wall: (a)

aperture at (po,O,O); (b) aperture at (a,O,zo) where a is

the radius of the cylinder.
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B ila y m sc

411= 1.84, 402 =3.83

(b) For IZo-k/21 >> a (Fig. 25b) the low-frequency penetrant

magnetic field at the center of the cavity for an aperture at

(a,0,zO) is given by

S+ 0.776 e-4111o,-i/21/a + +

H - (Cl+ Dl

3.03 -C12 Zo '2a:+". ()
+ e tz" CA Hsc (9a

where

C C ai m Hscý D mly am sH

(c) For a >> Z (Fig. 25b) tie low-frequency penetrant magnetic

field at the center of the cavity for an aperture at (a,0,zo0 )
I is given by

Sr -a H sc Y

+A24 YI a/"
+•z 4 4_a2 e- a/£sin(TZo/ ) .20 am Hsc (30)

In the above formulas, am is the magnetic polarizability of the

aperture in an infinite plane (see Sec. 2.1.3.2.1), H is the field at

H the aperture with the aperture covered. The validity of the above

formula lies in the assumption that the aperture is smaller than all

other relevant dimensions of the problem, in addition to being electri-

ii cally small.
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c. Apertures Backed by a Rectangular Cavity

Figs. 26a, b show two different kinds of apertures in the wall of a

rectangular cavity. For the problem depicted in Fig. 26a simple formulas

for the quasi-static penetrant magnetic field at the center of the cavity

are suarized below [10].

z

ht
w4

W a

Fig. 26. (a) A rectangular cavity with a small aperture in one of its

walls, (b) a hatch aperture with gasket in an infinite planar

plate backed by a rectangular cavity.
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(a) c >> a > b (deep cavity)

4. ~T2r-c/ (2a)si(Xo)H(a/2, b/2, c/2) - -17-T e-wc/(Ia) m n

(31)-e sin Oyobabx

+Iy-LZLe-flc/ (2b) sin(7ryAb) mI

(b) a > b >> c, Ixo-a/21 > b (shallow cavity)

0I' •( /2,b/2,c/2 7 -Trlx°-a/2[/b
ena/2, b/2, /2) e (mysi ein(rYo/b) -mxcos (Tryo/b)]

(32)4 -27Tr X - a/21/b (2
+ e [m cos(2ry /b) -m sin(2ny /b)]

be2 x 0 0

where (xoYo) is the center of the aperture and

"y Y m sc (33)

In each case the aperture is assumed to be small compared to all relevant
length parameters of the problem.

For the problem of Fig. 26b, an expression for the magnetic flux
liuking a rectangular loop (see the shaded area of Fig. 26b) formed by
a line located at z = z, x =a/2 and the cavity walls is given by [201

RL f(a'btC'Zl)H 
(34)

where___
where 8a 2 sinh[7 (c-z)/a]
f(abC 1  (a+2b) (b +4a/Tr ) snh(c/a) , if c > a

f(abcz) 4a+2b L aa4 - 3

1 (b_4c2/T 2a)sech2(Ta/2c)sin(Trzl/c)I , if a > c
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R - 2w/(cAa), L - f 0o(a+2b)/(40),

Q - 2 tn[4(a+b)/w],

a - conductivity of gasket

A - thickness of gasket

2.3.2.1.4 Coaxial Cavities

a. Coaxial Cavity With a Small Aperture in the Outer Conductor

The geometry of the problem is shown in Fig. 27. An approximate

expression for the magnetic field of the dominant mode excited through

an electrically small aperture A by a quasi-static external short-

circuit magnetic field H is given by [10]sc

-i !~oa . H (35)

* 2vak Xn(a/b) p "am sc

where*+ is the magnetic polarizability of the aperture in an infinite

plane (see Sec. 2.1.3.2.1),l andl1 are respectively the unit vectors

along the *-direction at the field point and the aperture. The dimension
of the aperture is small compared to all other relevant dimensions of

the problem.

2bI

20

ZUO z z(

Fig, 27. A coaxial cavity with an aperture in the outer conductor.
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b. Coaxial Cavity With a Hatch Aperture in the Outer Conductor

For the geometry shown in Fig. 28 the magnetic field of the dominant

mode excited through a hatch aperture by a quasi-static short-circuit

magnetic field H -Hsc is given by [21]

H -i- (36)
., 1 2a• Hs 2 +32/(a~o) R

*p In Zn(a/b) 3+3W/(ao0) 10(R+sL)

where

I
L 0 0 [l + /(a4o)]

X4 n[4(k +2a0o)/w] 0

and a and A are respectively the conductivity and thickness of the

gasket.

2.3.2.1.5 Depressions

a. Infinitely Long Rectangular Trough in a Ground Plane

The cross section of a two-dimensionpl rectangular trough in a I
ground plane is shown in Fig. 29a, where the dimensions h and w are assumed

-, .7 - ,i

JI

Fig. 28. A coaxial cavity with a hatch aperture loaded by a gasket in

the outer conductor.

I
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X 10.6

UrI,, r,0.4

0.2

04

0 0.4 0.8 1.2
(b) I I I II ,I / I

h/W 0.h/w .5-

0.8- 04-

0.2 _0.7---
0.5-

0.6- 0.3 - 0.3-- - 1.

0.- 0.20

IN.O 0...5- • >

0 .7 0/.0 .

1.50

00 oII
01.0 0.8 0.6C OA 0.2z/h 0 1.0 0.8 0.6 (d) 0.4, 0.2Z/h 0

Fig. 29. (a) Cross section of an infinitely long rectangular trough

in a ground plane, (b) the normalized magnetic and electric

fields at the center of the trough's bottom, (c) the

normalized magnetic and electric fields along the center

line of the trough, and (d) the normalized magnetic flux

and the normalized electrostatic potential along the center

line of the trough, where V - E scw/2 and 00 H Hs w/2.
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to be small compared to the wavelengths of the incident wave. Thus,

the quasi-static approxrimation can be used, and the field inside the

trough can be obtained by the method of cunformal mapping [22,235.

Fig. 29b shows the field strength at the center of the trough's

of the trough. Fig. 29d sha.js the variation along the center line

of the trough of the normalized magnetic flux between z -z and z -h

and the normalized electrostatic potential relative to the bottom of

the trough.

b. Infinitely Long Rectangular Trough Flanked by Two Dikes in
a Ground Plane

The field penetration into a rectangular trough flanked by two

dikes in a ground plane has been analyzed in [23] in connection with

EWP penetration into an open nose wheel well of an aircraft. The

geometry of the problem is shown in Fig. 30a. Under the quasi-static

approximation, the two-dimensional boundary-value problem is solved

* by the method of conformal mapping. Fig. 30b shows the field strength

along the center line of the trough. Fig. 30c gives the normalized

magnetic flux and electrostatic potential along the center line of

the trough.

For hi > w/2, the field strength at the center of the trough's

bottom is given by the simple formula

E z- H x -0.4789 eh/ (37)

sc sc

c. Magnetic-Field Penetration Into a Semi-Infinite Pipe2

The penetration of a quasi-static magnetic field into a perfectly

conducting, semi-infinite circular pipe under four different end

conditions has been analyzed in [3] (see Figs. 31a -d). The magn'etic

field of the dominant mode along the axis of the pipe is found to be
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2

j ,2h >
0, (c) 0 z/h 1

1.2.

-II

2h/w= 2.5 2.0 1.5

0.4-

-1 0-

/ Z/h

Fig. 30. (a) Cross section of an (b)niel long rectangular trough

flanked by two dikes in a ground plane, (b) normalized field

components along the center line of the trough, (c) normalized

magnetic flux and electric potential along the center line of

the truhfrh-,where V = E w/2 and 0 - zHW 1

tr u h f r L W0 sc 0 po s c /2
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X -:

a ... ..

x t"z2:--• ii

2a
Py

(a) (b)

resistive cap X

'I 2a2a

Iz
(C) (d)

Fig. 31. A semi-infinite pipe immersed in an external magnetic field:

(a) without flange, top view, (b) with flange, Bide view,

(c) with flange and resistive cap, side view, and (d) with

flange and annular slot, side view.
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H CiHexp(-_ z/a). z > 0 (38)Hx 2 1 °c

where ýi 1.84118 and Ci/2 is given in table 1.

TABLE 1. THE COEFFICIENT C /2
1

Perfectly Conducting, Semi-Infinite Pipe Ci/2

With a perfectly conducting flange 0.838

Without a flange 1.120

With a perfectly conducting flange and a 0.838
resistive cap 1 + 0.349 s P0aoA

With a perfectly conducting flange and a
cap having an annular slot of width 0.30
a/2000 at a distance a/10 from the

pipe's wall

From the table it is observed that (1) the effect of removing the

flange is about 34%, (2) the effect of inserting a resistance cap is

to yield a "shielding ratio" similar to that in other low-frequency

shielding problems, and (3) a perfectly conducting cap with an annular

slot, even though the slot is extremely narrow, seems to have little

effectiveness in shielding against the external magnetic field.

d. H~mispherical Depression in an Infinite Conducting Plane

A hemispherical depression in an infinite conducting plane is shown

in Fig. 32. The quasi-static electric field penetration into such a

depression has been solved exactly by the method of inversion in [24],

whereas the quasi-static magnetic field problem has been treated by

an integral-equation formulation solved numerically to a high degree

of accuracy [25]. It is found that in the illuminated side, the

circular aperture backed by the hemispherical cavity has the following

>olarizabilities
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a e 0.55 a 0.87 a (39)

which are smaller than those given by (5) of a circular aperture in an

infinite plane without cavity backing. Fig. 32a shows the normalized

magnetic flux 0 linking a loop. Fig. 32b gives the averaged electric

field Ez(z) along the axis defined by

a

Ez(z) a-z f E z(,0,z)dz (40)

z

0.6 0.3

i04 -0' 02-

Ii z/o0 z/0
l0.2 i-• 0.1

,i 

ca

0 00 . .a 0['/

Fig. 32. (a) Normalized magnetic flux versus z/a for ai loop making an

angle w)- /2 with respe~ct to H c; for other values of ,
0? is diminished by a factor sin 4). (b) Averaged electric

field along the synmmetry axis in the cavity.
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2.3.2.2 Diffusive Penetration Into CavitiesI The diffusive penetration comes about because the conductivity of

the walls, albeit high, is not infinite. At- low frequencies for which

I the wall thickness is less than the skin depth, the diffusion mechanism[ I is known to be an effective means for penetration by the magnetic field,

while penetration by the electric field is negligibly small by comparison.

At higher frequencies for which the wall thickness is larger than the

skin depth, most of the incoming electromagnetic energy is shielded

V out by reflection and attenuation losses due to the cavity walls. Thus,

IP diffusion penetration is of concern to the EMF system analyst mainly

for the low-frequency magnetic field.

VIF In this section simple working formulas are given, both in frequency

and time domain, to calculate the cavity fields for certain simple-shaped
enclosures. These simple formulas are then generalized so as to be

applicable to general-shaped enclosures.

2.3.2.2.1 Physical Considerations of Shielding

Fig. 33 shows an electromagnetic pulse He(t of width T0 impinging

on a closed metallic shell of conductivity a, permeability pj, and wall

H*"

ii hell

Fig. 33. An external electromagnetic pulse impinging on a closed cavity

with finitely conducting walls. V - interior volume of

enclosure; S -surface of enclosure.H 555
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inthickness A. The qualitative features of the penetrant pulse H (t)
can be obtained by first identifying the important time parameters
involved in the problem and then Ltudying their relative magnitudes
for enclosures used in practice [26]. These parameters are the pulse
width T of the incident wave, the transit time Ta (' a/c) for a signal
traveling across the enclosure, the diffusion time Td (- aA 2 ) of the

enclosure's wall, and the fall time T of the interior pulse H in(t).
The fall time Tf can be understood as the time constant of an LR
circuit which describes the decay of the induced eddy-current loops
in the shell. Clearly, these current loops have a resistance R - 1/(aA)
and an inductance L a Poa. Hence, Tf - L/R a PoaAa. In terms of the
velume V and surface S of the enclosure one then expects Tf = 1oaAV/S.
For a typical high-altitude EMP and a typical enclosure of several
meters in diameter and a few millimeters in wall thickness made of
aluminum, Ta I tens of nanoseconds, To N hundreds of nanoseconds,
Td u tens of microseconds, while Tf 2 tens of milliseconds. It is
thus seen that these time parameters are well separated by orders of
magnitude. The great separation in value between Ta and T is not
crucial in order to have a simple description of the diffusion and
decay processes that are involved in the physics of shielding by anhi H~~~~~exstiethenlurenclosure. Suppose the external pulse H strikes the enclosure
surface at t- 0 (see Fig. 33). Then for t < Td, the interior pulse

Hin is insignificant, since Td is the time for the pulse to "ooze"
through the wall. For t of the order of Td, H reaches its peak and
by this time the external pulse has long passed the enclosure. For
t > Td' the enclosure is left alone to decay through energy dissipation
in the walls according to the decay law of eddy currents [27], implying
that the fall time Tf of Hin is given by L/R and the peak value of Hin

is proportional to R/L. Furthermore, Hex is effectively an impulse
compared to Hin because T << T Thus the total time integral of Hex

is expected to play an important role, and so one can introduce an
effective impulse st-ength H°0 as

Ho 0 Hex(t)dt (41)
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In terms of H the peak value of H in is expected to be proportional to
0

H R/L with a dimensionless proportionality constant of order unity.I
In the frequency domain, the important length parameters are the

wall thickness A, the enclosure maximum linear dimension a, the wall

skin depth 6 (- /2/(wav)), and the characteristic wavelength A. (- CT
0 0

of the incident pulse. Typically, A =a few millimeters, a =several

meters, X = hundreds of meters, and 6 =5 x lO-3yX millimeters for an
0 inaluminum shell with X being the wavelength variable of H and measured

in meters. For 6 <A the wall is said to be electrically thick and the

attenuation and reflection losses in the wall account for a great deal
of shielding. For 6 > A the wall is electrically thin and the shielding

comes entirely from the eddy-current distribution in the wall, while

the attenuadion and reflection losses become irrelevant. This implies

that for an electrically thin shell the geometrical shape of the enclosure

is critical [4]. If one uses the above typical values, the dividing

point 6 -A corresponds to X tens of kilometers (or f =tens of kllz);

that its to say, for X > tens of km (or f < tens of kHz) diffusive
penetration will become important and if the planar-shield approximation

to enclosure geometry is used, shielding effectiveness can be over-

estimated by as much as 5 orders of magnitude or 100 dB [28].

2.*3.2.2.2 Simple-Shaped Enclosuresj

There are three canonical shapes of enclosure that have engaged

the attention of many investigators in the past, namely, two parallel

plates [5,29], an infinite circular cylindrical shell [5,30,31], and

a spherical shell [5,31- 33]. *For these geometries the penetrant

ca7ity field takes an extremely simple analytical form under the

assumption that displacement currents are neglected throughout. ThisI
assumption has been shown to be sufficiently adequate for treating

2 ~EMP shielding problems [34]. other cavity. chapes such as a prolate
spheroidal shell [35] and a finite hollow cylinder [36] have also been

studied but with no simple useful results.

2 The basic equations to be solved are
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VxF(r,s) - - sB(r,s) (42)

V xoE(r,s), inside shell

0, outside shell

with the usual boundary conditions that tangential E and H be continuous

across the air-shell interfaces (see Fig. 33). The constitutive rela-

tion between and is

+

+ PH, inside shell (44)

1 o, outside shell
0

a. Frequency-Domain Solution

Define the transfer function T as

in
T (s) - H (s) magnetic field inside cavity (45)

Hex(s) magnetic field in the absence of shield (

In what follows, Hex is taken to be uniform. We will use T for two

parallel plates (Fig. 34a), T(c for a cylindrical shell with a

longitudinal Hex (Fig. 34b), T(t) for a cylindrical shell with a
C

transverse Hex (Fig. 34c) and, finally, Ts for a spherical shell

(Fig. 34d). Solving (42) and (43) for these geometries one obtains [28]

T (p) (46)
p cosh p + Kp sinh p

111d(2.) 1 11"Tc (P) 1 . (
cosh p + 2 Kp sinh p

T C) (P) = (48)
t cosh p + -.(Kp + p )sinh p
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T s(P) I 2) (49)

cosh p + • Kp + ) sinh p
where

(50)

1d Vc 2 , s = w J j2wf(5

H H

(a) (d) 2

\Hex

2a 2a

(b) (c)

Fig. 34. (a)Two parallel plates, (b) a cylindrical shell with

longitudinal Hex, (c) a cylindrical shell with transverse

Hex, and (d) a spherical shell. All cavity walls have

thickness A, conductivity a, and permeability V.
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For non-ferrous shells, such as aluminum or titanium shells, K >> 1

since the linear dimension of a typical cavity is several orders of

magnitude larger than the wall thickness. In this case, (48) and (49)

are simplified to

Tc T(t) T (1)
c C

= 1 (51) .

cosh p + Kp sinh p

T1 (52)
cosh p + Kp sinh p

The transfer functions Tp, Tc and T as given by (46), (51) and (52)

are plotted in Fig. 35a for several values of K. They are again plotted

in Fig. 35b in units of decibels in order to exhibit their "break points"

and asymptotes.

For electrically thin shells (6 >> A), (46), (51) and (52) are

reduced to the simple forms

T(S) 1 + oAa (53)

T(s) 1 + spoaa/2 (54) i

1

T 1 + sp aAal3 (55)

each of which has only one break point, i.e., the first break point in

Fig. 35b. This break point is directly related to the decay constant

of the late-time behavior of the interior pulse.

For electrically thick shells, i.e., 6 <<A, (46), (51) and (52)

give
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T (s) 24A e d (56dp Poa sd5

T.(s) - (57)
- 0oa d

T (s) -÷ Ti-a . (58)

d

Formulas (46)- (52) are valid for frequency f << c/(2a), and K >> 1,
c being the vacuum speed of light. When f < c/(16a) and K > 5 they are

accurate to within 5%.

b. Time-Domain Solution

Since a typical nuclear EMP can be treated as an impulse so far as
the penetrant cavity pulse H in(t) is concerned, one may write for the

external pulse (Fig. 33)

Hex(t,x) - H o(t-x/c) (59)

where H is given by the time integral of Hex as indicated in (41).

0
Let the parameter 4 be introduced such that 4 - K for two parallel
plates, 4 K/2 for a cylindrical shell, and 4 = K/3 for a spherical
shell. Then, the transfer functions (46), (51) and (52) can be written

in one single formula

in
Tm(s) - H coshp + 4p sinh p p = d0

0

and the time history of the cavity field H (t) is then given by

Hin(t) Ho e Stds (61)

2nt j j= 00Q cosh p + Cp sinh p
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This Laplace integral can be expressed in terms of an infinite series

for computational purposes and the result is given in Fig. 36 for various

values of & [28).

The early-time approximation of (61) is given by [28]

S ~~2H 4rX/ (4t )

[ ln(t) = s oe d , for t/Td . 0.1 (62)

1.00
S100

0.8 105

a4 -

0.2-

0

j0 020.4 0.6 0.8 1.0t/r.0
t I

Fig. 36. Time variations of the penetrant EMP for various values of •.
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whereas the intermediate and late-time approximation of (61) is

iHn [ ed -4 2t/kd] (63)

Hin (t) - 2e + 2e , for t/>d 0.1•d

-1 2Since -<< w , the second and third exponentials can be dropped for

t > Td' The approximations (62) and (63) are plotted in Fig. 37 with

the exact solution for E > 100. These two approximate formulas together

describe the entire time history of the cavity field to a 0.1% accuracy.

I1.0 !

I
0.9 -

0.6-

yf 1'• 0.5-

'; 4OA -Eq.(62)
I .. Eq. (63)

0.3- "act•
Wfluton

0.2-

!.1 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

"t/ /d

Fig. 37. Approximate and exact solutions for a penetrant EMP for 1 > 100.
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Formulas (62) and (63) are valid for (i) >> 1 (physically I
thin shells), (ii) t > Ta (observation time is greater than the transit

time across the cavity which varies from a few to tens of nanoseconds),

and (iiW T d >> » o (the diffusion time across the wall is much gteater

than the EMP pulse width; typically, Td u tens of microseconds and

To = hundreds of nanoseconds). When these three assumptions are met,

formulas (62) and (63) describe the time history of the penetrant pulse

to a 0.1% accuracy.

2.3.2.2.3 Arbitrarily Shaped 'Enclosures

Formulas (60), (62) and (63W can be readily generalized to an I
arbitrarily shaped enclosure if the parameter ý can be expressed in

terms of the global quantiti6* of the geometry of the enclosure, such

as the volume V and the surface area S of the enclosure. Indeed, one

can write [281

1 _V (64)
1r SA

where p r is the relative permeability and A the thickness of the wall.

Define (see Fig. 33)

R - I/(aA) dc wall resistance

L - po0V/S = cavity inductance

Tf = L/R- fall time

Td -oA2 diffusion time

Then, • can be rewritten as

L f
L _ f (65)

d Td

With ý interpreted as (64) or (65), formulas (60), (62) and (63) can
Sreadily be applied to enclosures of any shape provided that the

assumptions of the preceding section are satisfied. Table 2 summarizes
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the important parameters of the interior cavi..y pulse H (t), where
kin inHi(peak) means the peak value of the time derivative of H (t).

TABLE 2. QUANTITIES CHARACTERIZING THE PENETRANT PULSE H in(t)

in k AinHi(peak) lin(peak) Rise Time Decay Time
(10- 90%) (lWe)

RH 6RH T
0 0od L

L Lo 4 R

dI

2.3.2.2.4 Enclosures With Other Wall Materials

There are cavities whose walls are made of high-p metals. Typical

values of the relative permeability p r are 103 - 104. For these types

of cavities one must resort to (46- 49), the inverse Laplace transform

of which gives [28], by the method of residues, the penetrant cavity

pulse shown in Fig. 38.

There are also cavities with walls made of ferromagnetic material

whose p is a function of the exciting field, or advanced composite 1
material whose conductivity is a tensor. Cavities with these types

of wall materials have received almost no attention, although EMP

penetration through a single slab has been investigated [28, 37 -38).

However, shielding by a single slab is not in general the same as

shielding by an enclosure against low-frequency magnetic field. Fig. 39

shows an example from which one can see that a single slab is 6 orders

of magnitude (or 120 dB) more effective in shielding than a spherical

enclosure of 3-meter radius and of the same wall material and thickness

as the slab.

2.3.3 PENETRATION
tI
The cavity fields discussed in Sec. 2.3.2 are created by the coupling

j sources described in Sec. 2.3.1. These fields may in turn penetrate through
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1.0

.8 - transverse cylinder, cphers
parallel plates, longitudinal

.6- ~ ~cylinderE I le
0 - - --- - - - . ......

0 .2 A4 .6 .8 1

Fig. 38. Effect of geometry on enclsure response, -=K for two parallel

plates, =~K/2 for cylindrical shell, ý -K/3 for spherical shell.

164

0_0

10 - titanium

aluminoim

0' --- single plate

1 10 to0 ,o
Fig. frequency (Hz)

Fi,39. Single-plate and enclosure transfer function versus frequency, i
where fis defined by (45).
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the next layer into an interior region of, for example, an aircraft via the

three different types of penetration treated in Scc. 2.1.3, namely, the

deliberate penetration via antennas, the inadvertent penetration via aper-

tures, and the diffusive penetration through conductive walls. These

penetration sources are illustrated in Fig. 40 and tabulated in table 3.

The various symbols in table 3 are defined as follows:

•c' c cavity electric and magnetic fields (see Sec. 2.3.2)

hef, = effective height and effective area (see Sec. 2.1.3.1)
e ef

•eq' eq = equivalent length and equivalent area (see Sec. 2.1.3.1)

Zin' Yin = input impedance and admittance (see Sec. 2.1.3.1)

ae, am = electric and magnetic polarizabilities defined with a

ground plane (see Secs. 1.4.1.4 and 2.1.3.2)

Tcm, T ce = Magnetic and electric current transfer functions (see

Sec. 2.1.3.3)

V o, I = open--circuit voltage and short-circuit current at the

antenna's terminals (see Sec. 2.1.3.1)

4. 4
p, m = electric and magnetic dipoles (see Sec, 2.1.3.2)

Seq' :m,eq - equivalent electric and magnetic surface currents (see

Sec. 2.1.3.3)

antenna penetration aperture peotration diffusve peneration

M -4%Tq, -m oeq

S.... IISC
Fig. 40. Three t3pes of penetration sources.
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TABLE 3. PENETRATION SOURCES

Penetration Excitation Transfer Function Penetration Source

h e ef' eq' eq+ ÷ he £eq
Antenna Ec, H Vo, I

C c c szin" Y in

Aperture C c ae+ am p m
,__ __ _ _ , _ _ _ __ _ _ __..,__ _ I_ _ __ _ _ __ _ _i

Conductive T T
Wall c C ce cm eq m,eq

The penetration sources in the third column of table 3 can be obtained by
multiplying the appropriate excitation in the first column by the appropriate
transfer function in the second column. It must be remembered that the
transfer functions discussed previously are calculated on the assumption

of an infinite ground plane, and hence, they do not contain the character-
istics of the cavity. The properties of the cavity, however, show up in
the excitation fields , HC"
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CHAPTER 2.4

CABLE INTERACTION

Engineering formulas and data describing the interaction of EMP-

induced fields with cables are presented in this chapter. The cable

interior usually represents the final shielded iolume of a given

shield topology; the cable guides electromagnetic energy from its
penetration point(s) to the load which terminates it. The formulation
of the differential equations governing the behavior of the currents

and voltages on transmission lines has been described in Sec. 1.3.2. 4
The parameters entering these equations and the solution of the

transmission-line equations are given in this chapter. '1

Two distinct types of cable configurations commonly occur in

this interaction problem: shielded cables, which are treated in

Sec. 2.4.1, and unshielded or open cables, which are treated in

Sec. 2.4.2.

2.4.1 SHIELDED CABLES

A shielded cable comprises one or more conductors within a

cylindrical conducting shell which serves to shield the inner

conductor(s) from the effects of external fields, in addition to

serving as a return conductor. When there is only a single conductor

within the shield and coaxial with it, the cable is a coaxial cable.

When there are two or more conductors within the shield, the cable is

referred to as a shielded multiconductor cable.

Engineering data and formulas are readily available for coaxial

cables but exceedingly sparse for shielded multiconductor cables.
Accordingly, most of this section deals only with coaxial cables.

Available data and formulas for shielded multiconductor cables apply

only to the propagation problem for such cables, and the penetration

problem is formally identical to that for open transmission lines

(see Sec. 2.4.2). The coupling problem for shielded multiconductor

cables has not been extensively studied.
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2.4.1.1 Coupling to Coaxial Cables

The source terms in the transmission-line equations for coaxial

cables are presented in the following two sections. In Sec. 2.4.1.1.1

the source terms for dist,ibuted coupling are given; source terms for

discrete coupling are given in Sec. 2.4.1.1.2.

2.4.1.1.1 Distributed Voltage and Current Sources per Unit Length

The distributed voltage and current source terms in the s-domain

transmission-line equations (117) of Chap. 1.3 are respectively V (O)(z,s)

and I' (z,s). For coaxial cables these source quantities are related

to the total cable current I (z,s) (the algebraic sum of the currents

carried by the center conductor and the shield) and the total charge

per unit length Q;(z,s) by

V' (s)(,s) = Z'(s)I (zs)T t

I 1(s) (z~s) a T(s)Q•(z,s) (2)

in which Z.1(s) is the shield transfer impedance per unit length and
RT(s) is the charge transfer frequency. It and Q are related by

equation dIt(z,s) (3)

dz + sQ'(zs)

Additional source terms associated with direct coupling to the external

field exist for eccentrically shielded "coaxial" cables and multi-

conductor cables in general. These terms do not occur in a truly

coaxial cables [1,2].

SThe parameters Z;(s) and RT(s) for tubular, braided, and tape- 1
helical cable shields are discussed in the fcllowing.

i- -'a. Tubular Cable Shields

A tubular cable shield is a cylindrical shell of conducting

material. The inner and outer radii are denoted by b and c respectively,
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the shell's thickness is d-c-b, and a denotes the conductivity of the

shield material, which is assumed to be non-ferromagnetic. For. such a

shield, the transfer impedance Z' has been given by (35) of Chap. 2.2,
T

and the charge transfer frequency QT- 0. In practical shields b/d >> 1

and c/d >> 1. An accurate approximate expression for Z' under these

conditions has been given by (37) of Chap. 2.2 and is repeated here for

easy reference

Z;(s) R' r'•d cschVsrd (4)T dc sd d

1 1(5)dc 2irad xc- 2wabd

where -dr pood 2 Curves of the magnitude and phase of Z'/R' as functions
d T dc

of normalized frequency fTd are shown plotted on different scales in

Fig. 1. A linear-scale plot can be found in Fig. 21 of Chap. 2.2. When

fTd >> 1, accurate approximate expressions for the magnitude and phase

of ZT/R' are
Tdc

IZe/Rdc =22 d (- d) (6)

argtZ._/Rlr J ] - (7)

The relative error in the expressions (4) and (5) is approximately

50 d/bZ over the EMP frequency spectrum. When fTd > 4 the approximate

expressions given in (6) and (7) are accurate to within 0.1%.

b. Braided Cable Shields

A braided shield is shown in Fig. 2. The radius of the shield is

b and the pitch angle of the woven braid is p. The dimension of each

of the braid apertures in the direction parallel to the cable axis is 6

and the circumferential separation between apertures at constant axial
position is w -47rb/N, where N is the number of carriers (bands of shield
wires) in the braid (in Fig. 2, N-8).
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The source coefficients ZT and for braided cable shields are given
by [3 - 5]

Zj•(s) " Z,•d(S) + s14 (8)

ns)-- sc'/c,• (9)

I ~in which Z~d is the diffusion contribution to Z.1, 14 is the transfer

I inductance per unit length, C' is the capacitance per unit length between

the center conductor of the cable and the shield, and CT' is the transfer

capacitance per unit length.
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(a)

braided-wire corejac ket shield wire

Wj(b) I

Fig. 2. (a) A braided shield, (b) developed surface.

The diffusion term Z'd is given by (see Eq.(4))

Z•d (S) "R r5T- csch Vsrd (10)

in which denotes the shield dc resistance per unit length of the braid

2ii bdK (K11

where a is the conductivity of the braid material, d is the shield

thickness (typically taken equal to the diameter of the shield wires),

and K is the optical coverage of the braid, i.e., the fraction of the
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total shield Erea covered by the shield conductors. Curves of the
magnitude and phase of Z'd/R are shown in Fig. 1.h

The transfer inductance per unit length L' may be expressed in
T

terms of N, K, and • as follows [4]:

2V° (1 - K) a/(*)cosLT' 0f m (12)
N 4 + (i-K)33 1 1W (ý)h()c°s3m csc 20

m h

in which a (*) is a normalized magnetic polarizability of the shield
m

apertures and Eh(P) is an interaction sum which accounts for the effects

of neighboring apertures in the shield. Um(O) is related to the magnetic
m

polarizability am( () of an isolated aperture by

q )3sin2' (J')(3am(p) 2 Co 08 ~m(p)13

m--(0) and cos3 Zh(0) are tabulated in table 1 and shown plotted as

functions of 4 in Figs. 3 and 4. The transfer inductance per unit length

Smay also be written in the abbreviated form

Vo 3/2 'Lv -•[g1-K) [I] (14)

T 2Ng

The function g [(I-K)3 /2 ,i] is given in tabular form in table 2..

The transfer capacitance per unit length CT is conveniently

expressed as [41

1 2 fd(1- K) 3 /2*ae (4)cos (

4 + fd( 1 -K) 3•e(')Ee(*)cos 0 csc 2(

in which e(ý) !.s a nurmalized electric polarizability of the shield

apertures and E e is an interaction sum which accounts for the effects
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TABLE 1. % (m0 AND cos 43 Eh(4 ) FOR DIAMOND-SHAPED APERTURES

4' (Degrees) M(4) cos 34 Eh()M
m

0 0.524 -1.531

5 0.533 -1.511

10 0.552 -1.456
15 0.582 -1.370

20 0.619 -1.264

25 0.665 -1.166

30 0.725 -1.123

35 0.805 -1.167

40 0.907 -1.286

45 1.041 -1.420

_ _ ___ __1.

1.5
. . . .F I . . . . . . . . . , I ! I 5 1

1.0 1.51

0.54

O0.C...............

0( 100 200 300 40* 50 O 1 0K 200 300 40 50"

Fig. 3. 5mM) versus 4. Fig. 4. -cos 34 -h(3 ) versus 4.
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TABLE 2. g [(l-K)3 2 , 3/2

(j. 3 / 2

0.01 0.02 0.03 0.04 0.05

(x 102)

50 0.539 1.091 1.657 2.236 2.829

100 0.555 1.117 1.686 2.261 2.344

15" 0.584 1.173 1.767 2.366 2.969

200 0.621 1.246 1.874 2.507 3.143

250 0.667 1.337 2.010 2.687 3.368

300 0.727 1.457 2.190 2.928 3.668

350 0.807 1.618 2.433 3.253 4.076

400 0.910 1.825 2.745 3.671 4.603

450 1.045 2.098 3.158 4.226 5.303

9

of neighboring apertures in the shield. (') is related to the electric
e

polarizability a e (') of an isolated aperture by

(M ) 3 sin 2t -d- W' (16)e 2 cos ý •e()16

The permittivity of the dielectric between the center conductor and the

shield is e. The factor fd depends on e and upon the permittivity and

thickness of the cable's dielectric outer jacket. For practical cables,

fd is given by [6]

e +C if no jacket is present

(17)fd

2e
if a jacket is present

The permittivity of the cable jacket i- denoted by .
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Ee( ) and cos3i Xe(i) are tabulated in table 3 and shown plotted

as functions of P in Figs. 5 and 6. The transfer capacitance per unit

length CTI may also be written in the abbreviated form

1 Ih [(1-lK) 3 /2f, (18)
' T 2Nc -d 1

The function h [(l- K) 3/2fd,] is tabulated in table 4. Thus the charge

transfer frequency is, according to (9),

'2' -irs K3/2fd•
S) N (n(b/a) h (1k)3 fdi- (19)

where C' = 2w/kn(b/a) has been used (see Sec. 2.4.1.2.1), arid where a
denotes the radius of the center conductor of the coaxial cable.

The expressions given in (10) and (11) are accurate within approxi-

mately 50 d/b% for a "perforated conducting tube" model of the braid.

The expressions in (12) and (15) are based upon the assumption that

the aperture separation is small in comparison to the shield radius,

*so that a planar model of the cylindrirtal shields can be used for

analysis. It is estimated that for commonly encountered braid shields

these results are accurate within 10%.

c. Tape-Helix Cable Shields

A tape-helical cable shield is shown in Fig. 7. The shield has

radius b, thickness d (d << b), and pitch angle *. The width of the

gap between tapes is denoted by w. The number of separate helical

conductors in the shield is M (in Fig. 7, M- 2).

The source coefficients Z' and iT are given by [7,8]

zV(s) - Z d(S) + S (20)

5T(s) - - sC'/Cj (21)
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TABLE . - ) AD 3 e) FOR DIAMOND-SHAPED APERTURES

S(Degrees) 57 (0) cos 3 E (M)
e e

0 0.524 0.765

5 0.516 0.820

10 0.504 0.980

15 0.492 1.232

20 0.481 1.555

25 0.472 1.919

30 0.464 2.281

35 0.459 2.591

40 0.456 2.801

45 0.455 2.875

, 

I

.6 3.0 ' '-' ''

3 .5 
1I.8

C'~4

1 
0

.4 0.6 , , , , . ,

00 100 0_ V 3W400 00 100 • 30" 40" 41 1/!
I!

3
Fig. 5. •e(4) versus 4. Fig. 6. cos34 Ee(4 ) versus .

e

I
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TABLE 4. h [(1-K)3 /2fd] I
d 0.01 0.02 0.03 0.04 0.05

-2
(X 10-)

50 0.521 1.036 1.545 2.049 2.547

100 0.502 1.001 1.496 1.987 2.475
15* 0.491 0.987 1.463 1.944 2.423

20* 0.480 0.956 1.431 1.902 2.371

250 0.471 0.939 1.404 1.866 2.326
300 0.463 0.922 1.379 1,834 2.285

350 0.458 0.912 1.364 1.813 2.259

40* 0.455 0.906 1.355 1.801 2.244
450 0.454 0.904 1.352 1.796 2.238

in which Zd is the diffusion contribution to Z', LT' is the transfer

inductance per unit length, C' is the capacitance per unit length uetween

the center conductor and the shield, and Cj is the transfer capacitance

per unit length.

The diffusion term Z'd is given by

R' dc d- csch Yrs8 td L1 + tan* coshvrsrd (22)

Curves of the magnitude and phase of Z' /Rd' are given in Fig. 8 forTd dc
various values of *. When fT >> 1 and * > 0, accurate approximate

expressions for Z4d/Rdc are

2.2 ~ ~IZ~jd/Rd'l a 2wf~d tan (3

arg[Z' /R'^] r/4 (24)

When • -0, (6) and (7) may be used.
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If' (a)I

... ..... b 4l

½..... WN
2rb

Fig. 7. (a) A tape-helical shield, (b) developed surface.

The transfer inductance per unit length t is expressed asJ

14 [(1 - a(/b)tan + k(w/4b)sec (25)

4 M

where a denotes the radius of the center conductor of the coaxial cable.

When i > 0 and w/4b << 1, the first term in the square brackets in (25)1

is much larger than the second term. This is the situation most commonly

encountered in practice. i
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102 ' '"'"- magritude ISO0

S...imm

"•00 900p"180eK ~10 09'z:2

.40.

-2-20
10 -0 I00fid

Fig. 8. Magnitude and phase of Z.d/Rdc versus fTd for tape-helical shields;

- 20, 40, 600.

The quantity l/C• is given by

1 d 2(26)
- __ (w/4b) sec (26

where e is the permittivity of the dielectric between the center conductor

and the shield, and fd is the factor defined in (17). The charge transfer

frequency UT is given by

aT(S) -s (w/4b) 2 : sec i/ (27)•T~s "kn(b/a) C + C:

for a helical shield with M-1 and without an outer dielectric jacket.
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The result in (22) is analytically exact when d-10 and the gap

width w + 0. Typically w is very small and the error is negligible.

The most important contribution to 4 comes from the first term in

square brackets in (25). The first term represents the contribution to

Z' due te the circumferential currents in the shield. That term is

analytically exact under the assumytion that the current density is

uniform across the tape. The remaining contributions to ZT and aT

are accurate to within 1% when w/4b < 0.1.

2.4.1.1.2 Discrete Voltage and Current Sources

The discrete voltage and current sources V((zos) and I (zo s)

due to the presence of an isolated aperture or connector at z -z are

given by [4,9]

()Z' (a) zw%
V (z S) I wm ((z S) (28)

0 (2rb)2Zc (s)

i(S)(zo s) =w e
S(2sb) 2Z (6) Q((Zo,s) (29)

c

in which Z' denotes the cable's series impedance per unit length, Zc

the characteristic i-medance of the line, and Zw I 7 the wave0

impedance of the dielectric material between the center conductor and

the shield. The magnetic and electric polarizabilities of the aperture

are denoted by am and ae respectively.

The discrete voltage source V(s) appears, in an incremental

transmission-line circuit model, in series with an impedance Za given by

z(S) w (30)
a (21rb) 2Z c(s)

where L' denotes the cable's series inductance per unit length. The

discrete current source I appears shunted by an admittance Y a given by
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-8 Z a C,

ya - (31)(2wb) 2Z (a)

cI
in which C' denotes the shunt capacitance per unit length of the coaxial
cable. When the isolated aperture is used to model a connector, a contact

resistance term R. whose value must be determined from measurements is
added to the right-hand side of (30). An equivalent circuit representation
of these discrete sources and their associated iittances is shown in

Fig. 9.

Z/2 V(",/ 06/ Zý,/?

Irenugueion trneai~
linl line

Fig. 9. Current and voltage sources and their associated inmitances

for discrete excitation.

In practice, one may use the ideal values for Z', ZC, L', and C'
(cf. 2.4.1.2) in (28)- (31) to obtain for tubulaL or braided-shield
cables the following formulas

V ( s ) _)_ _ _ _

V (z0 ,s) 02 % s (32)
(2wb)

-2wsc
.(s) - Q'(z s) (33)

(2wb) 2 tn(b/a)
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Za (a) 811 () I

z W - 02 am (34)

(21b) m

S9s - 2n 2 (35)
(21b) in (b/a)

For tape-helix shield cables, V(s) and Za given in (32) and (34) should

be multiplied by the factor

+ 2 n(b/a)1 - a2/b

and I and Ya given in (33) and (35) should be divided by this factor. 9

Polarizabilities ae and am for apertures of various shapes are given

in Sec. 2.1.3.2.

The results in (28)- (31) are analytically exact for apertures

whose dimensions are electrically small. Thus they may be regaided as

exact in practice. The expressions in (32)- (35) are as accurate as

the approximations used (see Sec. 2.4.1.2).

2.4.1. 2 Propagation

The total series' impedance per unit length Z' and the total shunt

admittance per unit length Y' for coaxial cables with tubular, braided-

wire, or tape-helical shields and shielded multiconductor cables are

presented in 2.4.1.2.1. The solutions of the transmission-line equations

are presented in 2.4.1.2.2 for coaxial cables with distributed shield

coupling and for coaxial cables excited at an isolated aperture.I
2.4.1.2.1 Series Impedance and Shunt Admittance per Unit Length

The series impedance per unit length Z' for coaxial as well as

shielded multiconductor cables contains terms arising from the finite

resistance per unit length of the shield and of the conductor or

conductors within the shield, and terms arising from the inductance
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of the region between the shield and the center conductor or conductors.

In well shielded low-loss cables, neglect of the resistive contributions

is a standard engineering approximation which leads to conservative

estimates of the induced voltages and currents on the cable interior.

This approximation is adopted throughout this section. In the following

paragraphs, Z' and Y' are presented for coaxial cables with tubular,
braided-wire, and tape-helical shields, as well as for shielded multi-

conductor cables.

a. Z'(s) and Y'(s) for Tubular-Shielded Coaxial Cables

The internal immittances per unit length Z' and Y' for a tubular-

shielded cable are given by [10]

Z'(s) - kn(b/a) (36)
~2w

V'(s) -(37)jsn(b/a)

when resistive contributions to Z' are neglected.

b. Z'(s) and Y'(s) for Braided-Shield Coaxial Cables

The internal immitances per unit length Z' and Y' for a braided-

shield cable are gi'ven by [2,11]

Z'(s) - Zn(b/a) + s4 (38)27(r T

Y'(s) . I n(b/a) +s-1-(39)

wheres T
where LT' and I/C are given in (12) and (15) respectively. Resistive

contributions to Z' have been neglected.

If the second terms in the above exprussions are neglected with

respect to the first, then (38) and (39) reduce to (36) and (37)
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respectively. The relative errors in Z' and Y' incurred by neglecting

the terms in L I and l/C' are respectively

•g and •
N £n(b/a) N £n(b/a)

where g and h are given in tables 2 and 4. For typical braided-shield

cables, these relative errors are less than 1%.

c. Z'Vs) and Y'Vs) for Tape-Helix Shielded Coaxial Cables

The internal immittances per unit length Z' and Y' for tape--helix

shielded cables are given by [8]

V S ° kn(b/a) + ( - a2 + (w4b 2sec (40)

Y'(s) " 27r•s n(b/a) + fd (w/4b) 2 sec (41)

when resistive contributions to V are neglected. The terms proportional

to (w/4b) 2 may generally be omitted with negligible error, yielding

Z'(s) sp 0°Pn(b/a) + i (1 - a /2 tan/ 2 (42)

Z' (s) 2---- (n4b3))

' zn(b/a)

for the tape-helix shielded cable. The relative error incurred by

neglecting terms in (w/4b)2 is less than 0.1% if w/b < 0.1 and i < 600.

d. Z'(s) and Y'V(s) for Eccentrically Shielded Cables

When the center conductor is not coaxial with the shield, the

results given above must be modified. Let the distance between the axes

of the shield and the internal conductor be D. Then (36) becomes
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Z' (S) - arccosh (44)

and (37) becomes

Y'(s) 2•2•s/arccosh a2 +b 2 -D2  (45)
2ab /

Eq. (42) becomes

0- a2-+b" + D2 -s a2/b2 )tanu2 (46)

Z, (S) -arccosh27 2ab 47 -

It is noted that

rn2ab arccosh a 2  / £n(b/a) (47)

e. Zlj(s) and Yi'j(s) for Shielded Multiconductor Cables

For a shielded multiconductor cable the per-unit-length series

impedance (Zlj) and shunt admittance (Yij) are matrices. Tables 5 and 6

give respectively the elements Z' and Y' for two- and three-conductor

cables. To obtain those quantities it is assumed that the dielectric

medium inside the shield is homogeneous and lossless, and that the inner

conductors and the solid tubular shield are perfectly conducting.

2.4.1.2.2 Solutions of the Transmission-Line Equations

Let a cable run between z- 0 and z- I and be terminated by impedances

Stoat z- 0 and z t at z- X. The characteristic impedance of the line

Z and the complex propagation constant yc(s) are related to Z' and Y' by

Zc(S) - [Z'(s)/Y'(s)]I/ 2  (48)
1/2

Yc(S) [Z'(s)Y'(s)l (49) I
The terminal voltages and currents will be given in terms of the total

current It for distributed excitation, and in terms of V and I for
discrete excitation.
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a. Distributed Excitation

General formulas for the currents and voltages at the terminating

impedances of a cable externally excited along its length are [8]

1(Os) - -V(O,)() 1 (Os) + Ie(O,s) (50)
Z CS) m e

to

with I(2,S) W I-~} I(2,s) + I (2,5) (51)
with

f e 

(52)

im (o,s) - (1-ro) -m o (52)
e -o roI e

-(l + ) f e + F ge e-
ZZto YCL -Y c

e - ore

I (Os) (rom 0 m -Y (54)
e r- rok e

1+ r g+r of
I e(Zs) e o, (55)

Se r ro e

rF and r are the voltage reflection coefficients at z- 0 and z £

Zo - Zc

"t£ C (56)

to c

H ii
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and fm' gm' fe' and ge are the source quantities giveu by

zT

fm 1 !T Q2 (58)

c
Z ]

fe 2s e-Y P.

S T e It()M It(O) + YQl (60)

be 2s Ie 1 t(C() - - Y (61)

where

Q1 e c I t (u,s)du (62)

f e It(u,s)du (63)Q2 -.

When the line is terminated at each end in its characteristid -.

impedance,

I(O=s) - (Zt/2Zc)Q) + 9OT [e c P. - It(O) + Y Ql (64)

I(9.,s) - (ZY/2Zc)Q 2 - eYc(
I~')- e -Zt.• -(T/2c LT t(0) - YcQ2 (65)

When Z to Zc and ZtW-0, the short-circuit current at z-k is twice

that given in (65) and when Zto-Zc and Z the open-circuit vJ.tage

at z-1 is (2Zc) times the current given in (65). Terminal currents

and voltages may be obtained for any other desired special case by

appropriate manipulation of (50) - (63).
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b. Discrete Excitation

The point of entry of the externally excited signals is taken to be

z" z (0 < z < 1). The general formulas for the currents and voltages

at the terminating impedances are

whr n av-endfne n(6 n (5) n

ev(oas) eoS o (68)(O,s) Zt(s)e I 2) +Yc z - roe-Yc ) /2

I((,s) +z /(s)(S z X z (67)z ti(s) z YC( 0 o) -TC( 0 o
e sur e

where F0 and ra have been defined in (56) and (57) and

I

-I (Z e + ea/2) + V (Ze, + a/2 + 21Ya)ya/2

c y -- (70)

0° (s) - (Zeo + za/2) (Z + Za/2)y + (Z +Z +Z

(S) (Z eo +z a/2) + V e (Zeo + a/2 + 2/Ya)Ya/2 ()
Es .6)ad(69) fo a0 /2)a(Zd e P +b ca/2)Yia + (Zder + zsem + z a) by

The source quantities I Vg zac , and Ya are given in (28) -u 31)
/•-• a••d Zeoaa.,e •I are the impedances seen at z - zolkigowr 0

sand z - respectively

e C 7+ e
z =ozceYC -Y o (70)

e -Fe

•c(£- 0) -c(£ o)
e + re

,z = (71)

Se - re

Eqs. (68) and (69) for Io and I£ may be considerably simplified by
neglecting terms involving products of I(S), V(S), Za and Ya under

this approximation
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it)V(S) z e__I(s) I
(S) +(z + Z (72)

Yet +eo a a eAeo

v(s) + z I(S)I()eo (3
Is(s) -Z +z +(Z +( Z(73)

Y.• eo a Ya ekZeo)

where the denominator terms in parentheses can be dropped if IZek +Zeol

is large in comparison to IZa + YaZeLZeol.

The internal signals induced by the sources at z -z when the line

is terminated in its characteristic impedance at each end are

- zIS -YcZo z
I(Os) - 2Z a (74)

( V(s ) + z c j( e (Y-z0 ) (75)
2Zc

When Z toZc and Zti-0, the short-circuit current at z- P is

s(ks) [V +(s) (S)z Y (76)

When Zto" Zc and Zt- -, the open-circuit voltage at z- X is

Voc(,s) V(s) +I(s)z] e-Yc(L-z0) (77) 1
Terminal currents and voltages may be obtained for any other desired

special cases by appropriate manipulation of (66)- (73). 1
The approximation involved in obtaining (72) and onward yields

negligible errors, owing to the small magnitude of the quantities

involved for typical cases.
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2.4.1.3 Penetration

The voltages and currents appearing at the terminations of a

coaxial cable which is excited from its exterior through imperfections

in the shield may be calculated from a knowledge of the Thfvenia and/or

Norton equivalent circuits which represent the cable. Such equivalent

circuits are given in the following two sections. In 2.4.1.3.1 equiva-

lent circuit models for a cable with distributed coupling are presented;

models for a cable excited at a single point are given in 2.4.1.3.2.

In each case equivalent sources and immittances are given for the z- £

termination of a cable which extends from z-0 to z -1.

2.4.1.3.1 Penetration Resulting From Distributed Excitation

The parameters of the Thdvenin equivalent circuit for the cable

termination at z- P are

Yc -Y k
+r ce + re

ZmTh(,s) - Z yc£ -c (78)

e -re

2Zc (gm -rofm) + 2 (ge + ro fe)
V (Zs) - (79)
Th Yc z Yc

e -Fe
0

where r0 has been defined in (56) and f Km, g fe' and ge have been

defined in (58)- (63).

The parameters of the corresponding Norton equivalent circuit are1 1
YN(L's) - z 1,s) (80)

-(s)(Ys)
VTh

I•(s) (9's) " Th((81)- V.~~(Z(81)
N z ThZmQs)

Results for three special cases are given below.
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(a) zo 0
to

£/Th(is) " Zctanh yc£ (82)

Z (•)(+ fm) + (g - f
V cosh y 1 (83)

(b) Z -z

ZTh( ,s) Zc (84)

- 2(Zcým +ge)e-yc (85)

(c) zto

ZTh(£"s) Zccoth ycz (86)

Zc(4m. fm) + (g e+fe) V
vii- . . . .... (87)

2,4.1.3.2 Penetration Resulting From Discrete Excitat±o

The parameters of the Th~venin equivalent circuit for the cable i
termination at z-, are

z- (k9, ak + roe (88)
e -re

s)e(s e + r e e + r °0 (V• • (k.S) V yz (89)if 
" re e - e

600

L?



The parameters of the corresponding Norton equivalent circuit are

Szm (P,. s) (90)

(a) __ __ __

) (its) - Z ( , s---- -7 (91)

Results for three special cases are given below.

(a) Zto -0

Z (1,s) " Z tanh y Z (92)

S1cosh y ct c cosh y c (

(b) Zto iZn

ZThm(1,S) Zc 
(94)

v•)(a '') [v(s) + zcI(S)] e'YC( Z°) (95)

(c) Zto-

ZTh('s) " Zecoth y k (96)

"(s)(1,S) v(S) +i v z 1 (97

ssih y Z sinh y (97)
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2.4.2 OPEN TRANSMISSION LINES

Another class of cables often encountered within an aeronautical

system consists of open or unshielded wires, as opposed to the coixial

lines treated in the previous section. Engineering information pertinent

to the analysis of open transmission lines is presented in this section.

2.4.2.1 Determination of Line Parameters

The analysis of transmission lines described in Sec. 1.3.2 requires

a knowledge of the line capacitance and inductance per unit length, or

equivalently, the characteristic impedance Zc and propagation constant

Yc. For simple two-conductor systems (one conductor plus reference
conductor, i.e., N-1), the usual line description is in terms of Zc

and yc. For multiconductor lines, however, the inductance and capacitance

coefficients are more useful, especially when modes of different velocities

can exist on the line.

It is assumed in the following that the transmission lines are in

a homogeneous medium and that all losses can be neglected.

2.4.2.1.1 Isolated Transmission Lines

One type of transmission line found in EIMP applications is an

isolated bundle of conductors containing N+1 wires. For the N -1 case,

we have the conventional two-wire line, and for N > 2 the line is said

to be a multiconductor line. It will be assumed that the total current

on the wire bundle is zero at every cross section. Fig. 10 illustrates

a typical (N+l)-wire line, with the (N+l)st wire serving as a reference

conductor.

The inductance per-unit-length matrix (L'j) of this line has

elements [12]

L' "- n n-N+l (98)

and
Li'j L -n i#j, n N+1 (99)
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for i,j =l, , .. , N. It is assumed that all values of D and r satisfy

the relation D >> r. Here Dij represents the distance between the

centers of the ith and jth wires, and rj is the radius of the jth wire.

Note that the matrix (Li1) is of order NxN.

With the assumption of'a homogeneous dielectric of relative

permittivity er surrounding the line, the capacitance coefficient

matrix may be evaluated as

(ci 1) = L (L' (100)
v2 11V

where the velocity v is given by v- c//F,- and c 3 x 10m/sec is ther

free-space wave velocity. Under this restriction the characteristic

impedance matrix may be written

iiiij

and the propagation constant is

Svc

( )c(ij = r ij) (102)

wireeI

wire N+I (reference)

H Fig. 10. Isolated (N +l)-wire transmission linu.
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Table 7 gives these values for a two-, three-, and four-wire isolated

line, each of which has wire radii much smaller than the wire separations.

2.4.2.1.2 Transmission Line Over a Ground Plane

Another transmission-line configuration frequently encountered in

EMP problems is that of a bundle of N wires located near a perfectly
conducting ground plane (Fig. 11). For this configuration TED modes can

exist on the transmission line without the requirement that the total

current on the N wires be zero; the return current flows in the ground
plane. One cau regard this as an (N+ 1)-wire transmission line by

considering the ground plane to be an additional wire.

The inductance term for a single wire over a ground plane is [12]

L' =- 0 n(2h/r) (103)

where r is the wire radius, h is the wire height above the ground plane,

and r << h. Similarly, the mutual inductance between two wires above

the ground is

Li' " -- n (104)I
i T 2n (Dij,/Dij)(14

wire II

Fig. 11. N-wire transmission line over ground plane.
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where Dij is the distance between the two wires and Dij, is the distance

from one wire to the image of the other in the ground plane. With (103)

and (104) the capacitance coefficient matrix, the impedance matrix and

the propagation matrix can be calculated from (100) - (102). Table 8
presents these quantities for one-, two-, and three-wire lines over a
ground plane.

2.4.2.2 Coupling to Open Lines

The lumped or distributed equivalent voltage and current sources

which drive the transmission-line equations of open lines are discussed

in this section. Two types of excitation illumination by a plane wave

(Sec. 2.4.2.2.1) and coupling from a parallel wire (Sec. 2.4.2.2.2).are

discussed in detail; excitation by an aperture is briefly discussed

(Sec. 2.4.2.2.3).

2.4.2.2.1 Transmission Line Illuminated by Plane Wave

The distributed voltage and current sources for TEM excitation of

an open (N+ 1)-wire transmission line are related to the incident magnetic

and electric fields, respectively. One of the assumptions made is that

the separation of the conductors is small compared with a wavelength.

With this oafsumption the general source terms for TEM modes on an N-line

are (see Sec. 1.3.2)

(V ) s P (• •.H (105)

(is) = cj)(.) (106)

where is a displacement vector between the electrical centers of the

ith conductor and the reference conductor [13] and E and H are the

incident electric and magnetic fields. For wires with radii much smaller

than the wire separations, these distances become equal to the geometrical

separation between centers of the wires.

For the two-wire line illusLrated in Fig. 12 the per-unit-length

voltage and current sources take the form
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V((z) - S d1 H sine eeYz sin e
(107)

(z) - s C' d1 Eie-YZ sine

where y -sVe /c,
r ,

d1  D /[ ~ 1 2 ][~(D 2 ](108)

and the line capacitance is given by

-rI )] -2 -1

C' - 2 we arccosh 2r (109)

with rl,r 2 being the wire radii and D the wire separation. For D >> rl,r 2 ,

(109) reduces to

C' 2wc/Zn(D2 /rlr 2 ) (110)2I
HII

C'U

Fig. 12. Section of two-wire transmission line illuminated by an incident

plane wave. •iand the direction of propagation lie in the

y,z plane.
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2.4.2.2.2 Excitation of Transmission Line by a Parallel Line

A common type of transmission-line excitation in internal EW

interaction problems is that shown in Fig. 13. A wire with a large

current (the exciting wire) is located near a second bundle of N wires

over a ground plane. This entire internal interaction problem can be

viewed as N +1 wires over a ground plane in multiconductor transmission-

line theory. The capacitance and inductance coefficients for the entire

line may be computed or estimated using (100) - (104). It will be assumed

that the parasitic currents in the N wires do not substantially modify

the driving current in the (N +l)st wire.

Defining the inductance and capacitance coefficients for the entire

(N+2)-wire system as (Lij)N+1 and (C')N+1 respectively, the voltage

and current sources on the ith wire of the wire bundle can be expressed
as

I(S)(s,z) - s C'N V (Sz) i . . .Ni iN N + i, ,
(S)l

VS)(s,z) - - s L, II (s'z)q iI, . . . ,N
i~ iN+lN+l '

N-wire bundle

exciting
wire

N+1

V

3( N N+ N

ground plane

ir"!

Fig. 13. Wire driving N-wire bundle.
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where VN+l(sz) and IN+I(s,z) are the voltage and current at position z

on the driving line, and C'I and L1,1 are the individual capacitance
iN+l iN+l

and inductance coefficients between the ith wire and the driving wire.

The N-wire bundle can now be treated as a multiconductor line and

the presence of the (N+l)st wire ignored. For this approach to be valid

it is necessary that the loading impedance of the driving line be connected

only to the reference conductor and not to other wires within the N-wire

bundle; otherwise the driving wire is strongly coupled to the N-wire bundle
through the load.

In Fig. 14 is shown the cross-section of a two-wire line located

over a ground plane and excited by a third wire. From table 8 the induc-

tance coefficieuts are

PO (DI+D 2) _+ (h3 +h 1 )2

L' ..-. .n (112)
13 ' 4n (D 1+D 2)2 + (h 3 -h1) 

2

D n D2 + (h+h 223 Lr 1. 2 3 2 1(113)23 Or \D 2 + (h3-h2

)exciting
driven tine wire

h 3

Fig. 14. Two-wire line excited by a parallel wire.
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The corresponding capacitance coefficients are

en (Dl+D 2 ) 2 + (h3 +h )2

•€ I+D2 + (h 2hl)
C'13 (Dl+12 (2 3 -h 1) (114)

C + (2h 3  ) (115)

The voltage and current sources on wires 1 and 2 can be determined

from (111), once the response of wire 3 is known.

2.4.2.2.3 Transmission Lines Excited Through Apertures

Another important coupling mechanism results from an aperture in a
Vground plane and illuminating a multiconductor transmission liine. i

In general, the presence of the aperture will not only provide
excitation to the line, but will also modify the transmission-line para- •,

meters in the vicinity of the line. Engineering formulas are presented in

S8•cs. 2.2.1 and 2.2.2 for the equivalent sources and circuit parameters of

an aperture in a ground plane passing under a single conductor. No comparable

results for multiconductor lines are available.

The case of a transmission line excited by a localized source, e.g.,

a small, electric or magnetic dipole in the vicinity of the line, can be
treated in exactly the same way as the aperture coupling problem. The

2] 2

principal difference is that any orientation of the dipole moments is
permitted, and the dipoles need not reside on a ground plane. There exist

no readily available general results for the source terms for this typea

of excitation.
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2.4.2.3 Propagation Along Open Transmission Lines

When the equivalent voltage and current sources have been determined,

it is possible to evaluate the currents and voltages along the line, as

described in Sec. 1.3.2. In this section data for a number of cases of 1

excited transmission lines are given. Particular emphasis is given to

the behavior of the transmission-line load currents.

2.4.2.3.1 Two-Wire Line Response to Plane Waves

A two-wire line illuminated by a plane wave is shown in Fig. 15. (

The incident electric field is parallel to the load terminations (the

x-direction). The current flowing in the load at z-k is given by [16]
E(.) -- 2cM(s)b _Z (zc -zl)e-yk(l +sin 0)_- (Zc+Z1)eyt(1-a'n 8)] (116)

where Zc - characteristic impedance of the line, y - s/c, and 1
M(s) "Zc (ZI+Z 2 )cosh(yQ) + (Z 2 + ZlZ2 )sinh(yg)

y 1 z c z1E IV
P.4.

x-axiS.
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For the special case of grazing incidence (e 90Q), Fig. 16a shows

the frequency response of the load current normalized with respect to the

incident field for a 1-meter line having a characteristic impedance of
635 2, Fig. 16b shows the same quantity for broadside incidence (0 - 00).

-•i : .. I -m,

"b 10 :Icm,-2 1 Z:635

):1bZ Z2 b 0m

i' 0/-2 Z0- Ir 0 6I0 10
Z 0

10- 
I

(a) frequency (Mhz)

~z, z• z•,• Z2,= r.1i-

I�. •r, Z:7.2=635

F z0

I 0- I0 
10

(b) frequency (Mhz)

i Fig. 16. Normalized load current for a 1 meter line excited by a plane

i'. (b) in -y-direction (8 = 0O) [16].
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Note that for each of these figures, various combinations of load
impedance Z1 and Z2 are used.

The load current for the case shown in Fig. 17 is given by [16]

K(•s) r [(z c+ zl) (Zzc- 1l ]P
"I(L's) - YK(s) L eY 2 e-Z- Zlj (117)

where K(s) is the difference of the two incident electric fields on the

two parallel wires of the transmission line and is given by

K(s) - E (b,s) - E (Os) (118)

The other symbols are the same as in (116).

Fig. 18 shows the ratio uI/Eul as a function of frequency for the

same transmission line used in Fig. 16a, for the case where the wave

travels in the x-direction (6 - 90*).

I

ZI zo z
z

Z Xj

Fig. 17. Two-wire line illuminated by plane wave with E parallel to z-axis

and Hi in xy plane.
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• ~~~~~~~~I I | 1| I g\ • || I ||!|| i golol I||| I | |l"

b 
MI(•1 bZI Z© ZL b =It0era

for0 in Fz. :is ive

162- zo Z = ) 6o5 io

W Id74frequency (MHz)

Fig. 18. Load current for 1 meter line excited by plane wave with
EiZ. E traveling i 2 x-direction [16].

The Lurrent l(O,s) for the configuration shown in Fig. 19 is given
for various values of Z1 and Z2 in table 9 [17].

rwZI 
z e 

Z z
'•tYII

I. .- I

Fig. 19. Two-wire line illuminated by plane wave with normal to the
plane of the line.
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TABLE 9. LOAD CURRENT I(0,s) FOR CONFIGURATION OF FIG. 19

Terminating Normalized Current

Impedances (2Z /E b)I(O,9)

z1-z e-£(1 +coo e)

Z2 -
2-2

Z = c . ++ e- 2e-7£( +chs 8)
Z2 -

-l 20 eZlce0

2 2

Z 0 2

62

SZ2. 2 -2e-yx Cos 6 sech(yk)

Z-0 12- 2e"7Z(l +Cos 0})'

Z2 = c
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2.4.2.3.2 Two-Wire Line Response to Localized Sources

Fig. 20 shows the load current response at z- k for a 10 meter liuc

which is excited by a current I1 op located a distance R= 2 meters away

from the center of the line. The loop is located along the midpoint of

Xi

S.1-Om, R=2m,
"' b=O.O1m,]

' • JRz Z2 z Zc=360R,, Z2=360R"

Sloop

1P2

~. 1661511 o2 1

1(53' (a f,-,,,,,,,M~zI -
168 3

c6 101(0) 1 10 10 10
id 3, frequency (MHz)

10 I III*'"'lI

HW

U67I

1 100
152 - IdI 110 102

(b) frequency (MHz)

Fig. 20. Current transfer function for a 10 meter line excited b,. a

current loop. (a) Z1 =l10 Q; (b) Z1 1 = Q.
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the transmission line at the point z = 5 meters and lies in the plane of

the wires of the transmission line. The corresponding results for a small

point electric dipole are illustrated in Fig. 21.

XI

10m, R z2m,
b tR ZGb 0.01lm,

,- z ZC 360' Z 2 _360D,-
dipole

10A-3 .... ,

1(57
I0- io ,

102 I0-l I 10 02 103

(0) frequency (MHz)163+ , , +...,

10-4-

H'' j!
162 107, W 1t1 102 103

(b frequency (M Hz)

;, I Fig. 21. Current transfer function for a 10 meter line excited by an

electric dipole. (a) ZI i07•; (b)Zo 2 W z.
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2.4.2.3.3 Multiconductor Line ,esponce

In this section, we present the analysis of a rather simple network,

a sinp1' section of multiconductor transmission line, using the BLT j

formalý.4.m outlined in Sec. 1.3.2.3.

A two-wire line above a ground plane is illustrated in Fig. 22. The

corresponding 'inear graph for this simple network is illustrated in

Fig. 22c. Because the region around the multiconductor line is homogeneous,

R1(2) £= 0 m

(2) zs -1 2.5m !

RL11 (2)RL22 R() Zl oon

line 2 R = 2
+•, + Rc, (1) z,0

R(2) aloZ6 L22

RL11  R(2) a 500 i
RL•22 L4) (8

r2 hi= 2cm, h,= Icm
tube,

lh .=Dlcm = ===

=r .'05cmr 2 .Ol cm junction I junction 2

-. (b) (c)(C)I

Fig. 22. (a) Two-wire line over ground, excited bv voltage sources;

(b) cross-sectional view; and (c) linear graph representation.
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isotropic, and lossless, the per-unit-tength inductance matrix (L' ) is

directly proportional to the inverse of the capacitance matrix (C')-*

All current moaes propagate at the same velocity and the transformation

matrix (T nm) of Sec. 1.3.2.2.3 may be taken to be the unit matrix, (6n). *

For this special case the tube propagation matrix (Pn) is given by
n!m

( [nm 0 0e (119)

Since this network consists of only one tube, the propagation

supermatrix in Sec. 1.3.2.3 is just a 2 x 2 block supermatrix which, when

expressed in terms of its scalar components, has the form

(r) 0) yZ (i)0\(1
0 (0) 0 ( 0 I±) (0) 02

S2+ 2 (120)

":2(r) M (- e7 0 0 _ M _Y 02 2

where the subscripts on the reflected or incident current components refer

to actual wire components, due to the degeneracy of current modes and the

particular choice of the transform matrix (Tn).

The combined current sources in the above equation are due only to

the physical voltage sources V2 V2 on the line. Following (145)

of Chap. 1.3, these terms are expressible as

e s 0 -~)

: zj- : (121)
V., 020 e z l (s

624
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L.4

Yk 1 Z cnm (S)

ti2 02 e 2

where z is the source location, as illustrated in Fig. 21, and (Zn) is the

characteristic impedance matrix for the multiconductor lin-,.

From table 8 this impedance matrix can be calculated to be

(Z = ohms (123)Cl ri 48.3 317.9

Its inverse, for use in (121) and (122), is

(Zc)- 9  -.59] x l0-3mhos (124)nm-.59 3.2

At the z - 0 end of the tube, the current reflection coefficient matrix

(rI) is given by
UM

(r1  ) - ) + (Z"f))I- ((Z )-(Z') (125)I

nm nm rim nm nm

where (ZL a) is the load impedance matrix at z= 0

nm)-[10 0

l.0 01
LZI) 0 50 m (126)

The reflected and incident currents at this junction are thus related by I
1r)

I (rlm 1 (127)

(xr-o) j tm MIi)L 2-1 + (0). 1. (0) o
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and an evaluation of (125) gives numerical values for (rI )
nm

F.44 .041-,, 
( r I

A iia rlto L.7 .2 (128)

1i nm .07 .72 
:

A similar relation exists for the reflection coefficient (r 2 ) at
z Z- , irvolving the load impedance at that point. From Fig. 22 the load
impedance can be found to be

(Z. 2 )) [5 ohms (129)L IZn L 50 87.5

and the corresponding current reflection coefficient is

2 .29 -.15(10
nm -. 07 .60(

Hence, using (128) and (130) the scattering equations given in
Chap. 1.3 take the form

11(0) ( 4 .04) (0 0)I(i)(0)
(I2 (0)) \.07 .72 040 414) (0))

(r0) 0 .29 -.15 ~ i

Lr)• (2/ 0 0 / -. o7 .60/ 2 M

and the final BLT equation for the incident currents given in Chap. 1.3
becomes. W

becme (1 i( 0) (44 .04 0' -1l .IM (0)) .07 .72 0 ey2 12
1 1 e 0 .29 -. 15 V

M2 (() \0 eY2  -. 07 .60 22

626

, -,, . ." -,,



with the sources V given by (121) and (122).

This BLT equation may be solved for the incident currents and the

total load currents by evaluating (131). Fig. 23a illustrates the

normalized currents at z = 9. in wires I and 2 as a function of frequency

for voltage excitation on line 1 only. Fig. 23b shows the corresponding

curves for excitatiort on line 2 only.

Representative numerical results are shown in Figs. 24 and 25 for

a terminated two-wire line located over a perfectly conducting ground

plane and excited by a normally incident plane wave whose electric

vector is parallel to the axis of the line [18].

2.4.2.4 Penetration

The penetration problem is considered to be the transfer of energy
from the transmission line to the load imp',ance connected to the line.

The effects of the transmission line and sources are represented by a

Thdvenin equivalent circuit at the load in question.

Si ...... .I II " I I I I I ! I '

>4 4
6- 12 (R)/V1  3

C'~

S0 20 40 60 801000 20L 40 60 80 m00
(a) frequency (MHz) (b) frequency (MHz)

Fig. 23. Response of currents in wires 1 and 2 for a 10-rn line in

\ Fig. 22 as a function of frequency. (a) V1 (s) excited,

V2 (s) = 0; (b) Vl(s) = 0, V2 (s) excited.

> 4 >2

'I 627i.. -'
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FE
10DI

R, wm toam ~ R_

) RI: R2:50 ohms

3-0

5 10 50 100(b) f (MHz)

E

¢6 [. - I '

ýot

0 I I I I iI ,,1,I -L.L....J.I

1 5 I0 50 100
f (MHz)

, Fig. 24. Two-wire transmission line oriented parallel to a perfect ground

plane and illuminated by a plane electruoiagnetic wave. (a)

/11 •.11  vs. f; (b) 112 /Eil vs. f.
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14- E

1. II 1 0 IM. 1 0 1 I C = 7 0 4 p

1.0-

~0.8 ~P

0.4 ZL.225O i

HIZ5Oa

15 10 20
f (MHz)

Fig. 25. Two-wire transmission line oriented parallel to a perfect

ground plane and illuminated by a plane electromagnetic wave.
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2.4.2.4.1 Two-Conductor Transmission Line

For the case of a single-wire line over a ground plane, or for an

isolated two-wire line, the Thdvenin impedance and voltage source for a

point excitation on the line is given in Sec. 2.4.1.3,2, which dealsI. with the coaxial line. For distributed excitation the Th~venin impedance
remains the same, and the Thnevenin voltage source can be obtained by

integrating that uf a point source excitation.

2.4.2.4.2 Multiconductor Lines

For a multiconductor line the Thdvenin impedance seen at the end

of a line of length X can be expressed as

(Z (Z -1(y'6 13

Um nm

where the term (r is the current reflection coefficient matrix

given by (125).

The Th~venin voltage source for the multiconductor line Is given

by

(VTh M Um))
n

SYc Zs -Y e n SO (s
+ (Z e e'(6 -e c 5 m) I 5 (z )(134)

nm

... A where, as before, (vrnS)z d) and ( IM Z b)) rep resent the localized

voltage and current sources on the transmission line at the position
Z =ZS.

More general expressions can be derived for the Thivenin impedance

and voltage using the general results in section 1.3.2, which take into

account the multivelocity nature of energy propagation on the lines.

"630

S" ;••, -;• •' .. •:. ! ¢•f'', " a ,•. - -.- I



a. Open-Circuit Termination

For the special case in which the load at the end of the multi-
conductor line is open circuized, the reflection coefficient becomesI
the negative of the unit matrix a&nd the Th~venin impedlance and voltage
source become

(Zh) (Zc )coth(y PI)

nm nm(135)

V s(, sinh(yczs) ,- coah(y zs)

where z is the source location, £ is the line len~th.

b. Short-Circuit Termination

Here the terminatiou impedance is zt~o, giving a reflection
coefficient of unity. The resulting Thdvanin quantities are

~Th c ( )tanh(yL (136

is) coah(y z )/sinh(ycz)

Uc nm

c. M~atched Termiination.

Fo~r a xnatc'hecd line, (Z Ln) (Z -^m), and the refl~ection coefficient

is zero. The Thivenin quantities then become

(Z T m )i(Z c I
nm rim(137)
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CHAPTER 3.1

ASSESSMENT AND HARDENING

The purpose of this part of the document is to illustrate the

application of the interaction technology described in Parts 1 and 2 to

composite problems representative of system hardening or assessment

into volumes, surfaces, transmission lines, apertures and antennas is

discussed, and in Part 2 the responses of these elementary components to

electrical excitations are presented in detail. In Part 3 we illustrate

the recombination of the solutions for these elementary components to

obtaia a system response, with error estimates on the calculations.

In this chapter we discuss the assessment and hardening problem and

hardening concepts in general terms. Then in Chap. 3.2 are presented

aieveral illustrative system examples. In each of these example analyses

we begin with a general description of the system components in order to

identify the system topology. We then decompose the system into principalI

surfaces, principal volumes and elementary components, and illustrate with

numerical examples the system response to the EIMfl. In addition, where
system susceptibility to the EMP is identified or postulated, techniques

for reducing the susceptibility are illustrated.

3.1.1 THE ASSESSMENT AND HARDENING PROBLEM

The analysis of system susceptibility or the synthesis of system

iimmunity to the EMP are classical source-interaction--response problems.

In susceptibility analysis one seeks to determine the response for given

source characteristics and intervening structure, whereas in synthesizing

hardness one seeks to limit the response to an acceptable level for a

given source by appropriate manipulation of the intervening structure.

In either case, an understanding of the EMP interaction with the inter-

ven~ing structure is crucial. A fundamental difficulty in acquiring this

understanding, as well as for many other interference analyses, is that

the electromagnetic properties of the intervening structure are often not
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I
,.peciL'ied (e.g., structural materials, plumbing, etc.), or they are not

specii,, t-or the entire spectrum of interest (e.g., 60 Hz power components

O~r w(A- . le, •y communication equipment, etc.). Thus for susceptibility

,maly5L~ one must identify the intervening structure and estimate or

me,&.:i _ LLs electromagnetic properties, while for hardening one must

;pt',cij, and control its procedures.

hi addition to understanding the structure, one must also know the

sci;it ivity of critical circuits to the response. This sensitivity to

,LipSit o01 damage varies over a wide range and depends on the input-output

.ir iLt design and the shielding quality of the equipment cabinet or

ious ing. Thus, considerations of circuit design and shielding also enter

kn[o aLn integrated approach to system hardening.

. Severity of the Problem

To put the EMP interaction and hardening problem in perspective, we

UbOKLUrvw that the high-altitude EMP can induce open-circuit voltages of

th• order of MV or short-circuit currents of the order of 10 kA in over-

,'Lad conductors such as power lines. Small-signal electronic circuits

iK, data processing typically operate with switching signals of a few
volt-; or a few tens of mA. Thus, to prevent EMP-induced transients on

powe:r lines from producing circuit upset, sufficient shielding, attenua-

Lion, or other interference reduction must be provided to reduce these

I.r;i.nnt peaks by a factor of 106 between the power lines and the

.•;•ll.--.ignal circuits operated therefrom.

.or airborne systems that do not possess long exposed conductors, one

,'. •rain a similar perspective by deriving the effective area of a plate

,loop aitenna (Fig. 1) ýhat will produce the switching voltage or current

',di](1 ( expoSed to the incident high-altitude EMP. The quantities of interest

,j:-irc the short-circuit current induced in a small plate antenna, which has

,large source impedance, and the open-circuit voltage induced in a small

h•,p ;•otc•na, which has a small source impedance. These effective areas
2

. iproxiMatuly 1 cm . That is, a plate (or loop) antenna of this area

•,,,,'Leted directly to the small-signal circuits will. have sufficient current
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plate area A I

dE rod equivalent

(a) small equivalent electric dipole

loop areaA

Oc 10 dtslot equivaleat

0 Lz AO A
(b) small equivalent maognetic dipdole IL

Fig. 1. Dipole current and loop voltage induced by external fields.
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(or voltage) induced on it by the incident EMP to produce switching-level

transients in these circuits. Therefore, one must virtually eliminate

electronic circuit exposure with shielding and insert sufficient attenua-

tion between exposed conductors and the small-signal circuits to limit

the transients delivered to those circuits to tolerable levels. I
3.1.1.2 Shielding Surfaces

Because of the great disparity between the EMP source strength and

the circuit sensitivity, compatibility between them can only be achieved

through a systematic approach to interference control. The foundation for

such an approach is described in Sec. 1.2.1. The space about the sensitive
electronic circuits or devices is partitioned by shield surfaces. As

illustrated in Fig. 2, shielding surfaces may be used to control inter-

ference of external origin, such as EMP, lightning, power switching

transients, etc., or to control interference of internal origin such as

emanations from transmitters, rectifiers, counters, and other switched

high-current or inductive loads. Hence, the fundamental approach is

applit:able to controlling the EMP and all other types of interference,

Sspace \reflected penetration 1,-0)
wave penptretione..ato (

("0 reflectedcden
incident() flectedj \incident

transmitted penetration (-'0)
guided wave

incident. penet rati on (- 0) -i

eflected - nrtn(.Oshield r

conductor Nsurface

(ai) exclusion of external waves (b) confinemnent of internal waves

Fig. 2. Shielding surfaces.
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which is an important consideration since it permits an integrated

approach to interference control and tends to eliminate situations in

which correction of one interference problem aggravates another. The

control of internal and external interference sources with a two-layer

shield system is illustrated in Fig. 3.

3.1.1.3 Penetration of Shields

The shielding surfaces may be compromised by conductors that pass

through them. Such conductors are usually necessary to supply operating

power and to communicate with the shielded circuit (i.e., to accommodate

input and output data). Other conductors having non-electrical functions

may also pass through the shielding surfaces. Pipes and tubes for

utilities, hydraulic and pneumatic systems, and steel cables for controls

and hoists fall into this category.

clightning
EMP .... n..

"( tsensitivec t
switching ... circuit Is
Fwhnsig. 3 . t cn i ine(cOnfinind )

c!! ircuit 2 weak ... no shield

interference rnai ntefernc s es na.
.diverters

"' i(f ilItars,
!j ~surge limiters,:
• ~~~etc.) :::fi

Si . .... .. ....... ... ......... ::: :::[! , ~ ~~~~~~~(excluding l'::Viiii!!!ii~ii::

"I !Fig. 3. Two-layer shielding topology for controlling internal and

LI[IIexternal interference sources.
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The shields may also be compromised by openings for personnel

entrance sad egress, ventilation, light, and access for assembly or

maintenance. Smaller, but often numerous, openings occur at riveted,

bolted, or spot-welded Joints in shield surfaces. All such openings (or

apertures) permit some of the interference fields to penet~re~e through

the shield surfaces.

Finally, because all practical shielding materials are imperfect

conductors, some of the interference fields may diffuse through the shield.

Except for very long slender structures such as cable shields, such diffusion

is usually important only at: low frequenciet or 'for electrically thin. shields.

In summary, interference fields may penetrate shields

(a) along insulated conductors passing through the shields;I

(b) through openings or imperfections (apertures) in the shields;

(c) by diffusion through imperfectly conducting shields,

The objective of system hardening is to control these interference penetra-

tions at each shield, so that the interference reaching the sensitive circuit

is within the tolerance of the circuit.

3.1.1.4 Coupling and Propagation

For a quantitative analysis of hardness, the current and charge

distributions on conducting appendages (power lines, trailing wire antennas,

missile plumes, etc.) and on the shield surfaces must be determined. The

interaction of the EMP source fields with these shield and with cables and

other elements outside the shield produces these current and charge distri-

butions, which in turn are the excitation sources for the three shield

penetration mechanisms listed above. The penetrant fields interact with

structures inside the shield to produce the current and charge distributions

on cables and other structures enclosed by the shield and on the surface

of the next inward shield. The latter is the first step of the nex~t layer

of the 'Luteraction problem that deals with the second shield surface.

These coupling and propagation analyses, which are the subject of

Part 2 of this document, often become more complex as the layer of shielding
increases. Outside the first principal shielding surface (e.g., outside
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the building shield or aircraft skin) there are only a few powei lines,

cables and antennas which are often of a simple geometry that is Amenable

to analysis. Between the first and second shields (i.e., inside the building

or aircraft skin), the number of cables and other structures is much greater

and their geometry is more complicated. Because of this complexity, the

engineering approach is frequently that of "scoping" the intermediate

interaction problem rather than obtaining an analytic solution to it.

Thus representative but greatly simplified examples, such as an insulated

wire passing through both shields, or a cavity-backed aperture, may be

analyzed to obtain representative wire currents or cavity fields. These
analyses may then be used t*o estimate the surge limiting or filtering

required on wires.

3.1.2 HARDENING CONCEPTS

3.1.2.1 System Topology

The essence of interference control, whether for the EMP or for other

hources, is to establish shielding integrity, thereby limiting the inter-

ference currents and fields that can penetrate the shield surfaces. AI
first step in interference analysis or control is, therefore, to identify

the system topology, as discussed in Chap. 1.2. That is, the principal

shielding surfaces at which the barrier to penetrating interference will
be established must be identified and examin~ed for compromising apertures

and penetrating conductors. In practical systems, there are often several

layers of shielding that form a set of nested shield surfaces, as shown

in Fig. 4, each of which serves as a barrier to penetrating interference.

In ground-based systems, the first principal surface might be a building

or room shield, and the second principal surface might be an equipment

cabinet, and the third principal surface might be a box that contains

the small-signal circuits. In airborne systems, the first surface would

usually be the aircraft or rocket skin, and the second surface would be

the housings for the avionics equipment. These surfaces usually serve

as successively more exclusive barriers to the interference, so that as

-trations are absent, the interference environment becomes less severe.
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Fig. 4. Principal surfaces Fig. 5. Elementary surfaces

and volumes, and volumes. j
In addition to the partitioning of space into principal volumes by

the nested shield surfaces illustrated in Fig. 4, the principal volumes

may be partitioned into elementary volumes by internal dividers as

illustrated in Fig. 5 by the dashed lines. This cellular topology is
common in aircraft and ships, where the interior regions are partitioned I
by bulkheads and decks. The cellular topology permits controlled grada-

tions of interference environment within a region between shield layers.

For nearly perfect shields (thickness large compared to skin depth)

it is sometimes convenient to visualize the shield as two independent

surfaces - an outside surface on which reside the externally induced

current and charge densities and an internal surface on which reside the

internally induced current and charge densities. This concept is depicted

in Fig. 6, where the two-surface idea for the shield layers is shown. For

uncompromised shields (no penetrating conductors or apertures), each cell

is electromagnetically independent of every other cell and of the external

environment.ild

3.1.2.2 Penetrating Conductors

The two-surface idea is particularly useful for determining how

interference-carrying conductors should be connected to the shield to
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Fig. 6. Two-surf ace idea for nested cellular shields.

preserve its integrity. If an external interference-carrying conductor is

connected to the outside surface of the shield, as illustrated in Fig. 7,

thus has little effect on the volume enclosed by the shield. However, if

the conductor is connected to the inside surface of the shield as in Fig. 8,I

1 ~the interference current flows onto the inside surface of the shield and

contaminates the volume enclosed by the shield. To preserve the integrity

of the shield, therefore, interference current of external origin must be

diverted to the outside surface of the shield as illustrated in Fig. 7.

Several examples of the proper application of this principle are

given in Fig. 9 together with some common compromises and violations of

the shield. Note that each of the compromises and violations permits the

currents on the outside conductors to flow into the protected region inside

the shield. It should also be observed that filters and surge arrestors

behave in the same way as any other connection of a penetrating conductor

to the shield; that is, they divert the interference currents to the

outside surface of the shield, thereby preventing these currents from

entering the protected region. Because power and signal-carrying conductors

cannot be continuously connected to the shield, they must be momentarily

connected (when a certain threshold is exceeded) or connected only at

frequencies not used for power or signals (i.e., through a filter). In
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shield
Fig. 7. Confinement of conductor current to the outside surface by

skin effect.

"Outside" 2::: .... inside"

shield

Fig. 8. Conductor current injected on the "inside" of a shield.
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PROPER COMPROMISING SERIOUS VIOLATIONS

outside inside

actec
ground• internarl

ground a

(a) grounding conductors

outside jinside

c~ n~d u------------

orr filter

"(b groundable" conductors

outside finside f 1
insulated [
conductor U.

*surge
arrestor '
or filter

(c) inculated conductors

Fig. 9. Shieldiag integrity near interference-carrying exterhal conductors.
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either case, the diverted interference currents must flow to the outside

surface of the shield, as illustrated in Fig. 9c, if shield integrity is

to be preserved.

Each of the "proper" methods of preserving shielding integrity shown

in Fig. 9 involves diverting the external conductor current to the outside

surface of the shield. Methods of interrupting the current could also be

empl.oyed, but at the first layer of shielding the current-diversion method

may be more reliable and less expensive than the currerlt-interruption|

approach. This is particularly so for ground-based Vstems for which

the external conductors way be power lines and communication cables that

can carry tens of kA of lightning or EMP-incuded currents toward the

shield. Since the open-circuit voltages associated with these currents !
are of the order of MV, current-interruption techniques for treating

these conductors would require insulation capable of withstanding these

extremely high voltages without flashover. Such insulation is expensive

to install and it requires considerable maintenance to ensure reliability.

(However, dielectric pipes can be ecoInomical for water, sewer, and other

plumbing penetrations.) 4
At secondary and tertiary shields where the open-circuit voltages

are less severe (i.e., hundreds of volts instead of MV), current-

interruption techniques are illustrated in Fig. 10, where the open-circuit
voltage impressed across the current-interruption device is also indicated.
Such techniques are usually applied only to insulated conductors such as

power and signal conductors; "groundable" conductors such as cable shields,

plumbing, and waveguides are economically and reliably treated with the

current-diversion approach of Fig. 9b.

There are, ot course, many other input/output circuits that can

serve as buffers or isolators at the secondary and tertiary shields. Many

of these are functional components of the system or electronic circuit 4
that can be adapted to shielding purposes. Rectifier power supplies and

dc-to-dc converters may serve to isolate the primary power conductors

from the conditioned power supplied to the small-signal circuits. Tuned
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zone zone 2 zone I zone 2

I I '

I

(a) bifilor choke Mb photon coupler

zonet zone 2 zone I zone 2

(c) isolation transformer (d) dielectric waveguide

Fig. 10. Current-interruption treatments for secondary and tertiary

shield penetrations.

RF amplifiers and mixers serve as narrow-band filters to exclude inter-
ference on the input conductors. Well-designed electronic equipment often i
contains balanced transmitters and receivers, emitter followers, or other

high-tolerance buffer stages to protect the small-signal circuits from
4 interference propagating toward the input/output terminals. Indeed, one

approach to interference control is to make the electronic equipment

"inherently immune" by providing high-integrity shielding in the cabinets

and using high-tolerance input/output circuits.
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3.1.2.3 Aperture Control

I I
Most facilities require windows, doors, ventilation openings, access

hatches, etc., which may also compromise the integrity of the shield. The

penetration of external fields through apertures that are small compared

r to a wavelength is illustrated in Fig. 11. As shown in Fig. ila, part
of the electric field that would otherwise terminate on the outside surfacej

of the shield fringes through the aperture where it may induce charges on

internal cables. Similarly, some of the magnetic field that would other-

wise be bounded by the surface current in the shield is permitted to

fringe through the aperture, link an internal cable, and thereby induce

a voltage in the cable (Fig. llb). If the aperture is large compared

to a wavelength, the incident wave can shine through the aperture as

illustrated in Fig. 12. Because the shortest wavelengths of concern

shield internal
ca ubl11ew shield

- ~external, [
externalmagnetic

exet ildfedUiternalcbl
field~ ~ pentran

( a ) 
f ie ld p e n e t r a t in g

Fig. 11. Electromagnetic penetration of small apertures.
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incident shield

reflected
wavefrn\

%.*-nenetrating
wovefront

Fig. 12. Electromagnetic penetration of a large aperture.,

I
I

in ENh hardening are of the order of 1 meter, the shine-through penetra-

tion mechanism usually occurs only at large windows and doors. Because

the shine-tirough wave is attenuated ',ery little in the direction of

propagation of the incident wave, however, almost the full incident EMP

peak field strength may be transmitted to the interior of the shield

through large apertures.

The fields penetrating a small aperture depend on the aperture size.

Thurefore, if a given area of wall opening is subdivided into small

openings, the penetrating fields at an interior point will be reduced.

Thus one common treatment for such openings is to cover them with a

conducting screen or mesh, so that the large opening is converted into

a multitude of small openings.

More reduction can be obtained with sacrifices in optical transparency

and increased resistance to air flow by adding thickness to the screen.

Thep each small aperture becomes a tube through the wall and behaves as

a waveguide beyond cutoff. Fields transmitted through a waveguide beyond

cutoff are attenuated exponentially with distance alcng the guide, so that
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¶ very large attenuation may be achieved by using many small tubes welded

or brazed together in a honeycomb structure. Sketches of the magnetic

field in the vicinity of a single aperture, an array of small apertures,

and an array of waveguides beyond cutoff are shown in Fig. 13.

shield shield
shield

' II

(a) single aperture (b) marty smo! (c)array of waveguides
aperturee.i beyond cutoff

Fig. 13. Magnetic field penetration of apertures.
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CHAPTER 3.2

ILLUSTRATIVE SYSTEM EXAM4PLES

In this chapter we present illustrative analyses for four example

systems: a rocket vehicle in flight, an aircraft, a ground-based system,

and a satellite. In each case we discuss the system in general terms,

decompose the system topologically, and then illustrate with numerical

examples the system response to the EMP.

3.2.1 ROCKET VEHICLES IN FLIGHT

Typical elements of a multistage long-range rocket vehicle are shownI

in Fig. I together with a representative electrical wire harness and

external cable raceway. The external cable raceway for interconnecting

the guidance and control system with the downstage components is commonly

used with monocoque motor construction. The raceway cable is used by the

guidance and control system to control motor ignition, thrust vector (or

other steering), stage separation, interstage jettison, and in some cases

engine shutdown or thrust termination. The cable is also used to provide

I~~. feedback on engine pressure, nozzle position, and other status or perf or-I
mance Ifarameters to the control system. At staging, the wiring associated
with the expended motor is jettisoned with the motor casing. The cable is

usually provided with pull-away connectors to accommodate this operation,

but mechanicaland explosive cable cutters have also been used.

Smaller rocket vehicles used for ground-to-air, air-to-air, or air-

to-ground missiles have similar components, but these are often one or

two-stage vehicles and are usually smaller than the long-range, multistage

vehicle. Smaller-vehicles using forward-looking radar, infrared, or other

ta~rget-seeking systems may also have the guidance and control package

forward of the payload, rather than aft of the payload, as is usual in
long-ranige vehicles. Finally, because the time of flight of the smallerI

vehicles is short, the in-flight characteristics of these vehicles are

interaction with the EMP is concerned. The electromagnetic characteristics

¶ of the long-range multistage vehicle will be examined in this section.
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* payload
guidance

tjInterstoge L

s 2U

interstage

$toae I

vehic:e wire rucew:y•, harness covers

S~Fig. 1. Multistage rocket vehicle, wiring, and cable raceway. !

Representative wiring in the vicinity of the payload and guidance
and control system is illustrated in Fig. 2. As illustrated, the raceway

cable originates in the guidance and control system and then branches

to supply the downstage motor and staging functions. Other wiring
associated with the guidance and control system may include telemetry

or comunuication antenna cables and cabling to provide payload cover-
removal, activation, and ejection. An umbilical connector to accommodate

ground checkout and pre-launch functions is also located on or near the

guidance and control system. When the umbilical cable is removed during

launch, the pins of the umbilical connector may be exposed to the DiP
environment. Deadfacing counectors that cover, retract, or break contact

with the pinls may be used to reduce this exposure.
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control -ton

umbilicalstaging I -._connector
Initiator
thrust , 3r ostage . -raceway

termination motor

Fig. 2. Typical payload and guidance cabling.

Representative wiring in an interstage area is shown in Fig. 3.

The wiring in this region supports engine ignition and engine pressure

monitoring, staging ordnance initiation, and perhaps thrust termination

or motor destruction (for aborting the mission) on the downstage motor,

and nozzle or thrust vector control and interstage-removal ordnance

initiation for the upstage motor.

The sensitive circuits in a rocket vehicle are mainly in the guidance

and control package, which contains small-signal digital electronics for

computing the vehicle trajectory and providing error-correction commands

to the rocket steering system. Additional sensitive circuits may be found

in the steering system (near the motor nozzles) and in the staging ordnance
system (electro-explosive devices).
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motor raceway

control •pul. \ " loway
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interstale

Ini.... a downstage igniter
and engine pressiure

stagingtransducer
ordnance •thrust termination

staging / or destruct initiator
• downstage I

motor destruct
I ~ordlnance

Fig. 3. Typical interstage cabling.

3.2.1.1 S:stem Topology

The first principal shield for the all-metal rocket vehicle is the

vehicle skin and raceway cover. Because high strength-to-weight-ratio

composite materials are displacing metals for large motor casings, however,

it is co-on for one or more of the motors to be electromagnetically trans-

parent. As illustrated in Fig. 4, the first principal shield is then

transferred from the metal motor casing shown on the left in the figure

to the raceway and interstage structure shown on the right. The current

density on the raceway will usually be larger on the nonmetallic rocket

than on the all-metal vehicle, and unless particular care is exercised in

maintaining the shielding integrity in the interstage area and at raceway

joints, the effectiveness of the first principal shield on the nonmetallic

vehicle may be considerably less than that on the all-metal rocket.

Compromises in the first principal shield often occur at joints in

the vehicle skin between stages, at joints in the cable raceway covers, and
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metal interstoge

and fittings

.... raceway, cable,
and bond wire

........ ..

all-metal skin nonmetallic motor
casings and shroud

Fig. 4. First-layer shielding for rocket vehicles.

at access ports on the interstage structure or on the skin of the guidance

and control system. The shield is also compromised at the aft end of the

vehicle where the end of the raceway cable and some of its branches may

be exposed. In addition, the umbilical connector and any openings for

antennas on the vehicle are also potential penetration points.

A portion of the second principal shield for a typical rocket vehicle

is illustrated in Fig. 5. The second principal shield is composed of the

raceway cable shield; the housings for the electro-explosive devices,

transducers, and nozzle control systems; and the guidance system container.

The umbilical connector may constitute an abrogation of the two-layer

shielding topology if conductors from this connector are connected directly
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system

Fig. 5. Second-layer shielding for rocket vehicle circuits.

to small-signal circuits inside the guidance system. Deadfacing or wire-

cutting operations may partially restore the two-layer shielding after

the umbilical cable from the launch equipment is removed.

Leakage through the second principal shield may occur at connectors

and along the raceway cable shield. EMP-induced interference penetrating

the connector shells and cable shield can propagate along the internal

conductors to the guidance and control system and to the electro-explosive

initiators and nozzle control systems. EMP-induced interference can also

enter the guidance and control system by means of leads from the umbilical

connector and antennas.

In Sec. 3.2.1.2 through Sec. 3.2.1.4 numerical example calculations

will be made for each of the events shown in the interaction sequence

diagram (Fig. 6).

3.2.1.2 External Interaction

The interaction of an all-metal rocket with the incident EbW can be

analyzed using the theory of cylindrical antennas. Because the configura-

tion of the vehicle changes as the motors are expended and jettisoned,

the antenna analysis may have to be repeated for several different
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V Fig. 6. Interaction sequence diagram for a rocket vehicle in flight.
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configurations. A 3-stage rocket may have 3,4, or 5 (nfigurations during

its flight (4 if the third stage is jettisoned, 5 if the payload cover or

shroud is also removed). These configuration changes primarily affect the

amount of analysis required, rather than the techniques to be used. In

the final configuration with the third stage and shroud removed, however,

the vehicle may be more accurately characterized as a satellite than as a

rocket.

A serious complication of the analysis is encountered if the effects

of the motor exhaust plume are to be included. This complication results

from the facts that the conductivity of the plume is much smaller than

tfh c of the metal skin and varies spatially within the plume, that the

size and shape of the plume vary with altitude (Fig. 7), and that the

electrical properties of the plume are not thoruughly understood. Never-

theless, the plume has the effect of extending the effective length of
the vehicle and causing the current density at the aft end of the vehicle

to be enhanced (see Sec. 2.1.2.3.2), as illustrated in Fig. 8.

For the rocket-vehicle example discussed here, an all-metal vehicle

is considered and the effects of the plume are neglected. In addition, it

is assumed that all joints and access openings are optically opaque, so that.1 only the magnetic field significantly penetrates the first principal shield.

The external interaction problem then reduces to that of determining theI

surface current density on the vehicle skin.

The current density at low and intermediate frequencies consists of

two parts. The first part is produced by the interaction of the incident

magnetic field with the conducting skin and is given by (ree Eq.(12) of

Chap. 2.1)

2 -c s a1)

when the electric vector is para~llel to the axis of the vehicle. The net

axial current produced by this interaction is zero, since the currentU induced on the front side Is in the direction opposite to that of the

current on the back side.
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The second part of the induced current is the electric dipole current

produced by interaction of the vehicle with the axial electric field. At

low frequencies (h << X), this current is of the form (see Eq.(12) of Chap.

2.1)

jwe aE iJ1 2 (1 -%) (2)

at the center of the vehicle, where a is the radius of the vehicle. For

El/Hi Z - 120w, max(Jo) L 1J,1  when

S1 1 -as
f < a (3)
Fl0m , 602 2 a 0

SFor a typical ICBM (L- 2h=20m, a=lm), then a is, according to (14) of

Chap. 2.1, approximately 0.9797 and the skin interaction current density J0

is greater than J for f < 4 MHz. Thus, for fields thaL diffuse through
S~the raceway cover, the current density Jo induced by Lhe magnetic field

will dominate. On the other hand, the high-frequency penetration through

joints and apertures and coupling to the raceway cable will be dominated
by the dipole or "antenna" current J1, because the coupled voltage has the
form J4Jl, which emphasizes the high frequencies.

The complete dipole current at intermediate frequencies is given by (17)

of Chap. 2.1. The EMP spectrum displays a 1/f behavior in the vicinity of

the half-wave resonance at 7.5 MHz. Hence, the first resonance response of

the vehicle to the incident EMP can be represented by the step responses

in Fig. 4 of Chap. 2.1. For our example we will assume Hi E i/120n - 133 A/m,

and the peak current at the midpoin, of the vehicle is then 5.8 kA, from

Fig. 4 of Chap. 2.1.

3.2.1.3 Penetration of First Shield and Intermediate Interaction
The intermediate internal interaction problem is to determine the

current induced on the shield of the raceway cable. The cable and raceway

are treated as a leaky coaxial transmission line in which the shield is
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the raceway and covers, and the center conductor is the raceway cable.

This model is illustrated schematically in Fig. 9 for three vehicle con- I
figurations$ The leakage through the shield occurs by diffusicn through

the covers, by a distributed longitudinal polarizability per unit length

cable zZII

L~T2 stoc and3

I

apertures i

z2 z

all stagge

Fig. 9. Excitation of raceway cable through apertures at cover joinis.

66 1Z V

$ In
____ I

al Stga

Fig 9. Exiaino acwycbetrog prue -oe ons
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al' representing the longitudinal raceway joints, and by a distributed
mzz

polarizability per unit length a' representing the annular joints
m, 0

between adjacent sections of the raceway cover, as illustrated in Fig. 10a.

The joint polarizabilities and the skin current density are used

k together with transmission-line theory to obtain the voltage and current

induced on the raceway cable. Two solutions, one for distributed longitudinal

joints and one for each of the distributed annular joints can be obtained

for the raceway cable illustrated in Fig. 10a. However, for illustrative

purposes we will use only one uniformly distributed transfer inductan'e

LT' to represent all leakage through the shield. To further simplify this

example, we will Ignore the interstage regions and the associated lumped

impedances Z2 3 and Z in Fig. 9. Thus we will model the three-stage vehicle

radeway as a single segment of a leaky transmission line, instead of three

segements/s illustrated in Fig. 9.

rnzz .-. • 4,

E c

(a) polmrizability per unit (b) small dipole equivalent
Slength of raceway of umbilical connector pins

cove joints

"I Fig. 10. Coupling parameters for raceway cover and umbilical connector.
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In addition, we will make an escimnate of the open-circuit voltage

induced on the pins of the umbilical connector illustrated in Fig. 10b.

3.2.1.3.1 Diffusion Through Skin

For a continuous metal raceway cover, the penetration of the missile

current through the raceway cover is by diffusion only. To examine this

effect we can use (4) of Chap. 2.4. The diffusion time constant Td for a

40 mil (1 mm) thick aluminum cover is

2Td d = 44.5 ps (4)

and from Fig. 1 of Chap. 2.4 the frequencies that freely penetrate the

cover are

f < I/T, 22.5 kHz (5)

Therefore, we are primarily concerned with frequencies well below the missile

resonance frequency of 7.5 MHz (the diffused fields at 7.5 MHz are smaller

by a factor of 1013 than those below 22.5 kHz because of shield attenuation

at 7.5 MHz). Furthermore, at 22.5 kHz, the 20-m long vehicle is electrically
short, and because the EMP pulse-width To is short compared to Td the EMP

appears to be an impulse of magnitude H0T0 , where H is the peak incident

magnetic field strength.0

The open-circuit voltage induced at one end of the raceway cable when

the other end is connected to the missile skin is then

Voc = JwZ (6)

where w is the perimeter of the raceway cover, 9, is the length of the missile

and ZT' is the transfer impedanc-e of the raieway cover given by (4) of Chap.

2.4 with w replacing 2nb. Making this substitution one gets

i, 2H 0T k sch/,7

oc ad d d (7)
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which has the spectral form shown in Fig. 1 of Chap. 2.4. The time-domain

curve for VOr.(t)dTd/(2H0 o0 Z) is given in Fig. 113b oi Chap. 2.1, from which

2 H • T -V = -5.9 -__ T 4.56 x 10-V, at t - 4.0 ps (8)

Vpk ad Td

It Is thus evident that a continuous flawless raceway cover would provide

adequate shielding for the raceway cable, since 4.6 mV on this cable should

cause no damage or upset in the missile electronic equipment. A similar
conclusion can be reached if a flawless cylindrical raceway cable shield

(or conduit) were used instead of the raceway cover.

3.2.1.3.2 Leakage Through Joints

In practical applications the raceway covers are attached with threaded

fasteners or quick-disconnect fasteners. Thus the cover is not electro-

magnetically flawless because the cracks between fasteners permit the

magnetic field to penetrate the covers. Such bolted Joints characteristi-

cally permit magnetic fields to penetrate through the seam. This effect

can be represented by a transfer impedance ZT - JwI4, as described in

Sec. 2.4.1, Eq.(8). Note that in contrast to the diffusion case discussed

above, this jwL4 leakage increases with frequency; hence the high-frequency

part of the spectrum is more important for this case.
Although the value of LT is not calculable for bolted and riveted

joints, a typical value for the equivalent polarizability a' is 10- m
m,zz

which implies values of LT' of the order of 1.0 - 1000 pH/m.

The voltage induced per unit length on raceway cable is of the form

dII

SV'(t) = L T d (9)

where I is the raceway currenL, a fraction of the total current on the

missile. At the midpoint of the missile, this current is a damped 7.5 M1z

1*'[ sinusoid of 5.8 kA peak amplitude. Approximately 1/20 of this current would

flow on a 1-foot wide raceway. Thus the peak raceway current is approximately
290 A, and
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pea 2'wfl1pa 1. 37 x10 1 0A/s (10)

Hence, the voltage induced per meter is 13.7 V/m for the larger value

of L IT.

K ~Because of propagation delays and nonunifcorm current distribution,

the total open-circuit voltage induced on the cable is less than k x13.7

volts -274 volts; nevertheless, a voltage of this magnitude is large

enough to be of concern for small-signal electronic circuits operating at

signal levels of the order of 1 volt. Therefore, it is apparent that the

second layer of shielding is necessary to provide a safe margin of protec-

tion for circuits at the ends of the raceway cable.

Usually the cable shield, which forms the second principal shield for

the raceway cable conductors, is connected to the vehicle structure at

both ends. The current and voltage (or charge) on the shielded cable short-

circuited at both ends must thus be known in order to perform the next

stage of the analysis - the penetration of the cable shield and interaction

with the internal conductors. Although straightforward, the analysis of

the transmission line with distributed sources is long and tedious (see

Chap. 2.4) and is best performed with the aid of a computer.

We may obtain an estimate of the current in the shield at low fre-

quencies (X << A) by observing that the impedance of the cable shield shortedI
at both ends is primarily inductive and is approximately given by

JwL -jw XL' (1

where L' is the inductance per unit length of the cable and raceway. For

broadside incidence the induced voltage in the loop formed by the cable

shield and its short-circuit terminations is

V(w) - jw ZL{I (12)

where I s the current flowing in the raceway. Hence the cable current at

low frequencies is
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It juL L' (3

For a typical characteristic impedance of 40 ohms, L' is 0.133 V~H/m, andI

for 4' 10 H/rn, the t:.:' cable current is

7.5 x10 1Iea 2.2A (14)

If the cable were not shielded, this current would flow on the wire bundle.

As the first resonance frequency f1 is approached, however, the cable

shield circuit can no longer be accurately represented by a lumped source

V driving a lumped inductance WL.

3.2.1.3.3 Voltage on Connector Pins

If the umbilical connector is not deadfaced when the umbilical cable

is removed, the pins may behave as small electric dipole antennas inter-
acting with the surface electric field (or the surface charge density

p cE) as illustrated in Fig. l0b. To estimate the open-circuit voltage

induced on the pins, we need to know the effective height he of the pins

(as dipole antennas) and the surface electric field strength E. From the

dimensions of typical umbilical connectors, we can estimate the effective

height of the pins to be about 1 cm. Also, from the properties of cylinders

having aspect ratios (ia) of 20 it is known that the surface field is on

the order of the incident axial field except very near the ends or corners

(where it is larger than the incident field) and near the center (where

the surface field vanishes). If the umbilical connector is at neither of

these locations, the open-ciLrcuit voltage induced on the pins is on the

order of

V =hE i
oc e (15)

500 volts (peak)

for the canonical 50 kV/m EMP. The antenna impedance (juC)_ is very large

at most frequencies of interest (C= 0.3 -1 pF) and the antenna is loaded
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with the chfracteristic impedance of the internal wire (~100 ohms), so

that the decay time-constant for the voltage delivered to the wire is

30 to 100 ps (i.e., much less than the EMP rise time). Hence, evenI.. though the induced voltage on the pin is much larger than that induced

by the raceway cover leakage, its effect on internal components may be

less important because of the vrshort time-constant of the circuit.

The use of deadfaced umbilical connectors ensures that this penetration

path will be ineffective.

3.2.1.4 Penetration of Second Shield and Internal Interaction

As illustrated in Fig. lla, the internal interaction analysis for

the rocket vehicle consists of repeating the transmission line analysis

using the raceway cable shield transfer characteristics driven by the

cable current to obtain the voltage and current of the internal conductors

of the raceway cable. For the internal conductors, only th~e current and

voltage at the cable-ends (i.e., those delivered to the sensitive compo-

nents) are of interest. These quantities arise from distributed diffusion

and aperture leakage through the cable shield (Fig. llb), and from discrete

leakage at the cable connectors (Fig. 11c). As was noted in the inter-

mediate interaction analysis, however, only the aperture leakage isI
significant for the EMP. The distributed transfer impedance and transfer

admittance for most cable shield configurations are given in Sec. 2.4.1.

The discrete transfer impedance for connectors may be obtained from

empirical data.

Although the raceway cable is a multiconductor cable) it will be

treated as a single-conductor cable (with shield) to simplify the analysis,

and only the common-mode open-circuit voltage at the end of the cable will

be determined. This voltage induced by the interaction of the incident

EM~P with the rocket vehicle will constitute the final result for this

analysis. In addition, as was the case for the raceway, the current in

the cable varies with position and frequency (or time). Because the

solution of the transmission-line equations for the distributed raceway,

to obtain an inverse Fouriei transform is very cumbersome, only a rough
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0

Fig. 11. Voltage and current delivered to loads in guidance system

and interstage components. (a) Shielded raceway cable and

connectors; (b) voltage and current from distributed coupling

(cable shield); and (c) voltage and current from discrete

coupling (connectors).
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estimate of the currents will be made. Estimates similar to those made

above for the voltage and current induced in the raceway cable will also

be made for the internal wire current and voltage.

3.2.1.4.1 Cable Shield Parameters

The leakage through the braided wire shield of the raceway cable is

determined by the transfer inductance and the charge transfer frequency

defined in Sec. 2.4.1. For our example, we will assume the following

cable shield properties:

cable radius b - 1 cm wire size in braid d - 0.15 mm

weave angle I -30° no. wires per carrier n 10

coverage K 0.9 no. carriers in shield N - 50

Then from (14) and table 2 of Chap. 2.4, the transfer inductance is

14c - 0.275 nH/m

and from (19) and table 4 of Chap. 2.4 (er = 2.3) the charge transfer

frequency is

11'r j 9.9X10 WC'

where C' is the capacitance per unit length between the inner conductors

and the shield. These transfer parameters are used to define the series

and shunt sources driving the internal conductors in the cable. These

sources, given by (1) and (2) of Chap. 2.4 are

"Li t' (s4,,.c ,> )
V - a4~It(z,s), (1 » (16)

where I and Q are the total current and total charge per unit length on

the cable.
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3.2.1.4.2 Internal Wire Voltage

The driving sources given by (16) are space- and frequency-dependent,

and because the cable is electrically long at the frequencies that freely
penetrate the shield, a transmission-line solution of the type described
in Soc. 2.4.2 is required to obtain the current and voltage on the internal

conductor. A crude estimate of the internal wire voltage is obtained from

the low-frequency approximation d1t

Voc (t dt

LiZ T dI (1.7)

where I is the raceway current which is approximated by a 290A sinusoid.

Using (10) for the value of dl/dt one finds the peak open-circuit voltage

to be

Voc(t)I 0 0.57 volts (18)
o peak

This is to be compared with 274 volts calculated earlier for the unshielded

raceway cable. The addition of the braided wire shield has thus reduced

the open-circvit induced voltage on the raceway conductors by a factor of

almost 500. I
This example has provided some insight into the interaction of a rocket

vehicle with the EMP and some representative excitation levels at points

of interest in the vehicle. However, the low-frequency approximations used I
for the internal conductor analysis are very crude and should be used only
for a rough estimate of the response. In a rigorous application to a system,

the skin current density and the raceway cable current and voltage must be
determined at enough points along the vehicle to define standing waves at
the highest frequency of Interest. That is, the distributed driving sources

must be defined and the transmission-line theory must be used to calculate
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the internal wire current or voltage. Such an approach is particularly

important in the rocket vehicle example because the resonances of the

vehicle and the cable shield occur at approximately the same frequencies,

and may have the effect of a double-tuned transformer in enhancing the

interaction of the interior wire with the EM? field at selected frequencies.

3.2.2 AIRCRAFT

3.2.2.1 General Description of Aircraft

3.2.2.1.1 Airframe and Fquipment

Although aircraft interaction with the EM? has some similarities

with rocket vehicle interaction, there are many significaut differences.

Aircraft undergo fewer configuration changes in flight than do multistage

rocket vehicles; their principal axes (wir~g and fuselage) are horizontal

rather than vertical; their engines produce no conductive plume; and their

flight trajectory in the atmosphere is predominantly horizontal rather

than vertical. Until recently, most military and commercial aircraft

L were of all-metal construction. While the all-metal airframe is still

the norm, the introduction of composite materials such as glass fiber cr

carbon fiber-reinforced epoxy is an increasingly common deviation from

this norm.

Aircraft are also equipped with extensive systems designed to

accommodate the flight personnel -- a fact that, on the one hand, makes

Sthe aircraft more complicated than the rocket vehicle and, on the other

hand, makes the aircraft somewhat less dependent on automatic navigation

and control systems. In the intermediate interaction regions, aircraft

are considerably more complex than rocket vehicles because of the ubiquitous

wiring, hydraulic tubing, control cables, and heat and ventilation ducting.

In addition to elaborate environmiental control systemss, the aircraft contains

a power plant and its derivatives, flight controls, and radio systems for

communication and navigation. Except for some of the radio antennas, these

systems arc all within the mold lines of the airframe.
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In addition to these flight systems, the aircraft will have "payload"

systems related to its mission. Thus, for example, the aircraft may be

equipped with fire control systems, bomb sights, terrain following

L systems, electronic countermeasures, 1FF transponders, and many other
mission-oriented systems. Fighters and bombers may carry external stores,

of weapons or fuel in pods on wing tips or on pylons under the wings.

Such external stores may be jettisoned, thereby altering the shape of

F the vehicle, and they may contain electronic circuits that are critical

to the aircraft mission.

Although the wide variety of mission payloads precludes a detailed

description of each here, it is observed that the systems that require

greatest EMil immunity are those containing small-signal electronic circuits.

Since many of these circuits are digital in modern systems, they tend to

be more susceptible to transients than the older analog circuits. It is

also remarked that mission-oriented systems have grown increasingly

sophisticated and susceptible to EMP effects with the development of

high-performance, low-power integrated circuit components. The same

remarks apply to flight systems. Hence, easuring the ability of the

aircraft to perform its intended functions in an E1Mfl environment (or

after exposure to one) is made more difficult by these advances in

technology.

3.2.2.1.2 Power Plant and its Derivatives

The power plant usually consists of one or more turbine eagines which

provide the power for propelling the aircraft as well as for generating

electricity, hydraulic power, and auxiliary power in the form of compressor

bleed air. Supporting the power plant are: (a) the fuel system, which

consists of the fuel tanks, Pumps, gauges, and purging or venting systems;

(b) engine controls such as the throttle, afterburner, and thrust reverser

controls; (c) performance monitoring systems for engine pressure ratio,

temperature, oil pressure, eagine speed, etc.; and (d) protection systems

such as fire warning sensors and fire extinguishers. Some of these items

are illustrated in Fig. 12. The power plant is composed of mechanical and
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air conditioner, cai11gt

Fcircuit breaker panels u #Wadgge

instrment landing light
panel engine pressures, i

soienoid valves,

electromechanical components that are relatively immune to electrical I
transients. However, alternator controls, rectifiers, and controls for

aircraft electrical power derived fromi the engine power often contain

small-signal electronic circuits that require considerable protection.

3.2.2.1.3 Flight Control

The flight control cystem is made up of the control surfaces,I

control cables, the stick, rudder pedals, trim controls and servomechanisms

associated with flight control. The control surfaces are shown in Fig. 13

and include the ailerons, elevators, rudder and speed brakes used in flight,

and the flaps and spoilers used in takeoff and landing. Steel cables from
the crew cabin to the control surfaces are used as the primary link

betwoen the crew and the control surfaces. However, actual movement

of a control surface may be done by hydraulic or electrical actuators or

by an aerodynamic boost device. In addition, because human reflexes are
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edge flops spoilers rudder

oitboard leading inboard flap

edge slats ~~inboard aileron 0"o oto
inboard aileron control tab tab

'outboard flap tabilizer actuatedS elevator tab

outboard tboard c€iieron balance tab elevator control tab
aileron stabilizer left elevator

Fig. 13. Control surfaces on a modern jet transport.

often incompatible with the aerodynamic responses of the aircraft, servo- I
mechanisms and autopilots are used to aid the crew in maintaining stable

flight. Gyros, compasses, altimeters, and other instruments used with

these servomechanisms thus become a part of the flight control system.

The flight controls are typically mechanical or electromechanical systems,

but servomechanisms and autopilots contain small-signal electronic circuits

that require protection from EMP-induced currents.

3.2.2.1.4 Radio Systems

The radio communication and navigation systems permit the crew to

communicate with the ground and with other aircraft, and assist in fixing

the aircraft position and in identifying and avoiding flight hazards such

as thunderstorms, enemy aircraft, or other aircraft on a collision course.

The communication systems in common use are VHF and URF radio, but HF is

often used on over-the-ocean flights, and VLF ra 'io is used on some

special-purpose aircraft. The antennas for some of these systems are
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illustrated in Fig. 14. Navigation aids in common use are radio direction

and range-finding systems (VOR, ADF, DME). Sophisticated ground-mapping

and terrain-following systems are found on some advanced military aircraft.

Most aircraft also carry weather radar, and military aircraft often have

IFF and ECM systems. All of these systems contain extensive small-Aignal

HIF tail Cop-

HF probe antenna VOR

UHF DME
weather ADF

radar transponder

(€ovity-booke fiedwreiigwr
(b)te ane na en (F

Fig. 14. (a) Some a~ntennas on aircraft; (b) wire antennas and flush-mounted

anlt ennas.
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electronic circuits that require protection from the EMP. Furthermore,

all of these systems use antenna elements that are directly exposed to

the external charges and currents induced on the airframe by the EMP.

3.2.2.1.5 Environmental Control Systems

Environmental control equipment required to accommodate the flight

crew and passengers includes cabin pressurizaLion, heatin6 and air condi-

tioning, oxygen supply systems, lavaturies, ejection systems, windows

and similar accouterments. Most of these items are relatively immune

to the EMP, and many are not critical to the aircraft mission. Neverthe-

less, examination of these components is always prudent. For example,

a window may be presumed to be immune to the EMP, but the compromise it

makes in the shielding ability of the skin may be imporLant to other

onboard equipment. Also, seemingly unimportant changes in technology

may produce significant ramifications In the susceptibiJity of the

aircraft to the EMP. As an example, the low-cost and flexibility of

microprocessors has led to widespread applications of these components

in areas not heretofore considered. Therefore, many devices that were

formerly mechanically or electromechanically operated and were therefore

immune to the EMP are now electronically controlled and potentially

susceptible.

3.2.2.2 Aircraft Topology

Most electronic components in conventional all-metal aircraft can be

viewed as having two principal electromagnetic shielding surfaces. The

first principal shield is provided by the metal skin of the aircraft, -nd

the second is provided by the metal equipment cases. For structural and

functional reasons, -he volume inside the skin is often partitioned by

bulkheads and decks, as illustrated in Fig. 15. Thus the volume inside

the first principal shielding surface is cellular, or in the terminology

of Part 1, it is divided into elementary volumes or subvolumes. For

example, the equipment bays near the nose of the aircraft, the pressurized
crew compartments, the bomb bays, the wheel wells, etc. are each nominally
closed elementary volumes inside the first shield. Similar partitions
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Fig.1. E r v e wipmeai brya

crew gmain wheel well

cable nd plubingpnrainpitadarieejotsnthsk.

equiportent bwy ber
enose wheel well

rhequipment bayetaPressure
bulkhead

Fig. 15f Elementary volumes within the aircrafther

occur in the wings and empennage between the aixed and moving parts (see

Fig. 13) and betriaen the fuel cells and the leading and trailing edge

regions of the wings.
Compromises of the first principal shield occur at windows, doors,

cable and plumbing penetration points, and at riveted joints in the skin.

The pressurized main cabin in Fig. 15, although potentially well shielded,
may receive EMP fields through windows and imperfect door seals and skin
joints, but probably more important will be the currents entering the

cabin on electrical wiring and control cables that are exposed to the

external EMP in the wings or under non-metallic skin sections or fairings.

In the equipment bays, electrical wiring, hydraulic tubing, heating and

I: ventilation pipes, control cables, and other plumbing may permit inter-

J ference to propagate from one elementary volume to another. Therefore,

the environments in elementary volumes that are potentially independent

of one another may in fact be closely related because of the many conducting

wires and tubes passing through the separating walls.
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The second principal shield, the equipment cases, houses the small- I
signal circuits. The equipment is packaged for installation in equipment

racks in the crew cabin or is mounted in one of the equipment bays.

Therefore, each item of equipment is usually small enough to be hand-

placed and each carries its own shield. A typical avionic system is made

up of several such packages intercunnacted with cables as illustrated in

Fig. 16. The second principal shield is thus composed of several poten-

tially independent regions; however, unlike the first priocipal shield,

these regions do not often share a common wall, although they may be

separated by a common first wall as in Fig. 16. Alternatively, the I
individual equipment shields may be interconnected through the cable
shields to form a single shield of irregular shape, as shown in Fig. 17.

external environment

first principal shield

orcai nent *cang prnialsil

S•int seond i~ipl sheldI

Fig. 16. Typical aircraft topology with unshielded interconnection

cables.
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external environment -

small-signal............: terminal hardening
environment

or conduit

Fig. 17. Typical aircraft topology with shielded interconnecting cablesI

in the cabin.

coaia atenatuned coaxial
receiver eternalico (external

environment environment:: environment)

sml-signal :::Mthn

small .... .... binw:ring:

..... ...... .... tsa ll -r p o w e r

(recive deta::i:retle p)e
Fig. 18~~~~..Tpoog. fr .rdi.sst... ... ......r. ....., s p l
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The topology for ai radio system with an external antenna ii particu-

larly interesting because of the external environment inside the antenna

cable. Fig. 18 illustrates a radio receiver with a dipole antenna

connected to the receiver by a coaxial cable. The receiver cabinet and

RF terminal structure must provide two layers of shielding to be topo-

logically consistent with the remainder of the two-layer shield system.

network or coupler and a tuned RY stage, although in practice these

shied-pesevin coponntsmay not be as distinct as those soni

theilutain

Because avionic equipment is often supplied, already packaged and

ready to mount, the airframe manufacturer may have little control over
the equipment case and its interior. Hie usually controls the inter-

connecting cable design and installation, however, 'so that he may be

required to determine v~hether the cables should be unshielded, as in,

Fig. 16, or shielded as in Fig. 17. The correct choice will depend on

the senisitivity of the equipment, the quality of the environment inside
the first shield, and on the cost and weight of cable shielding compared

to equipment terminal protection (or other techniques for maintaining the

integrity of the second principal shield.).

-To provide further EMP hardness for certain componenta a third

principal shield may be required, an example of which is the cable shield

with a cable conduit. In principle, one may introduce a third principal

shield, and so on, to reduce the interference to as small an amount as one
pleases, but the penalty of cost and weight of shielding will be increased.I

In the two sections that immediately follow, example calculations will

be made for several interaction paths. Fig. 19 is the interaction sequence

diagram that threads all the example calculations together.

3.2.2.3 External Interaction,

3.2.2.3.1 Airframe

adThe interaction of a flying aircraft with the EMP induces current flow,

adtherefore charge displacement, on the airframe. Typical quasi-static
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§ 3.2.2.3.1

Line
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v UHF Antenna Fixed-Wire
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3.2.2.3.3

F Wires Near Cable

Apertures Crosstalk

3.2.2.4.2 3.2.2.4.1

Fig. 19. Interaction sequence diagram for the aircraft

example calculations.
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airframe currents and charge displacements are shown in Fig. 20 for the

fuselage and wing excitations. Because the airframe of a medium-sized
transport aircraft resonates at a few M•z (e.g., the KC-135 resonates

at about 2.5 MHz), the high-altitude EMP spectrum excites the first

resonance and many higher-order natural modes. I

These induced skin currents and charges determine the interact.Lon of

the EMP with the aircraft's interior. That is, the penetration of the EMP

through a window, the excitation of a small antenna, and the diffusion of

fields through the skin are all dependent on the nature of the local E'P-

induced currents and charges on the airframe. Because the aircraft's

outer skin is for the most part composed of a highly conducting metal,

such as aluminum or titanium, the metal skin can be considered a perfect

conductor for determining the skin current and charge density. The

mathematical problem of calculating the skin currents and charges is then

Fig. 20. Quasi-static current paths and charge distributions induced

on an airframe.
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a problem in electromagnetic scattering by a perfectly conducting body.

The difficulty of such a problem depends on the complexity of the

scattering object, which in the case of aircraft is very great. In

aircraft external interaction Analysis, one is usually limited to modeling

an aircraft with simple geometrical shapes sucn as crossed pipes. For the

stick (or crossed pipe) model illustrated in Fig. 21, computer codes haveI
been developed to predict the values of induced currents and charges at

low and intermediate frequencies (see Sec. 2.1.2.1.4).

If a substantial fraction of the skin is composed of partially

conducting composite materials such as carbon fiber laminates, the

resulting reduction of the skin conductivity complicates the response

characteristics of the aircraft skin to an EMP. Consequently, the external

interaction problem for an aircraft equipped with a partially compositeI

skin is more difficult than the corresponding problem for an entirely

metallic skin. Nonconducting composites such as glass or arar'Id fiber

laminates are, of course, transparent to the EMP. Small nonconducting

composite sections may be treated as apertures in the metal skin.j

EMP EMP

[I Fig. 21. A stick model of an aircraft used in the aircraft EMP external
interaction calculation.

683



The external interaction of aircraft equipped with long trailing-wire

antennas for low-f requeney commnication systems (e.g., LF-VLF) is unique

because in this case, the characteristics of the antenna rather than the

airframe dominate the low-Lrequency response. In the context of electro

magnetic scattering, the airframe behaves as a small blob at the end of a

very long wire (Fig. 22). Thus wavelengths of several kilometers, which

are associated with low-frequency and quasi-static responses for most
aircraft, are associated with the intermediate frequencies on aircraft

with trailing-wire antennas (see Sec. 2.1.2.3.1).

Another important configuration to be considered is the "ground-alert"

configuration in which the aircraft is parked on the ground with ground

support equipment attached. In this configuration, the wheels are down,

the external stores are installed, the canopy (or cabin door) is open, and

a ground power cable and ground wire are attached. The excitation of the

parked aircraft by the MW also differs from that of the aircraft in flight

in that the incident wave is reflected by the ground, after which the

reflected wave also interacts with the aircraft (see Sec. 2.1.2.1.4d).

In either the flight or ground-alert configurations, the complete

response of the airframe to the EM is very Lomplex and difficult to

describe comprehensively. This difficulty results from the complex shape
of the aircraft and the broadband spectrum of the EMP excitation. Because

of these fa-tors, a complete description of the surface charge and current

"I

1

Fig. 22. Aircraft with LF/VLF trailing-wire antenna deployed.
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densities everywhere on the aircraft is almost never attempted. It is

adequate for EMP interaction studies to obtain the charge and current

densities at a few specific points on the airframe, such as the points

where antennas are mounted, where windows or albedo or sextant ports are

located, where there are doors or access plates, or where there are cracks,

seams, or nonmetallic skin sections.

3.2.2.3.2 UHF Antenma

As an example we will examine the current and charge in the vicinity

of an antenna such as a UHF blade antenna near the nose of the aircraft.

The charge density at the nose of an EC-135 aircraft is shown in Fig. 30

of Chap. 2.1. From Fig. 65 of Chap. 2.1 one can find the effective height

he and the impedance Zin of the UHF blade antenna. The open-circuit

voltage induced at the terminals of the antenna's connector is

Voc - hep/e° (19)

where p is the charge density which would exist on the skin of the aircraft

at the location of the antenna if the antenna were removed.

It is apparent from Fig. 65 of Chap. 2.1 that the effective height

of the UHF antenna is small (less than 0.5 cm) for frequencies below

100 MHz. It is also apparent from Fig. 30 of Chap. 2.1 that the charge

density p is very large (10c0Ei - Me 0 Ei for the frequencies shown).

Because the EMP source spectrum is weak above 20 - 100 MHz, the antenna

response in this region of the spectrum is also weak. However, in the

vicinity of 2.5 MHz, the source is significant and the charge density on

the skin is enhanced by the fuselage first resonance.

Because of the shunt across the UHF blade antenna (Fig. 64, Chap. 2.1)

the aitenna characteristic at low frequencies is

2
h e u h'(jw)2LCa (20)

where L is the inductance of the shunt (L - 27.6 nH), Ca is the antenna

I> capacitance (C.a 2pF), and h' is the effe, ive height of the antenna
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before shunting (h; = 0.2m). Because L, Ca and h' are all nearly independent
e e2

of frequency at frequencies below 20 MHz, he increases approximately as w

in this region, whereas the EMP spectrum is falling as W throughout most

of this region. Thus, if the normalized -(w) in Fig. 30 of Chap. 2.1

represents the impulse spectrum of the charge density, the antenna response

to the EMP will look like the derivative of the impulse response; that is,

V (w) ~K j WTM (21)

V (t) K d T(O)

where K - E hILC w 5.5 x10-16 and E - 5 x1o4V/m - awplitude of -Ei(t).
o e ao

While the inverse transform of the charge density spectrum can be

obtained numerically, an estimate of the transient charge density can be

obtained from the spectral peak magnitudes and bandwidths of the two

resonances displayed in Fig. 30 of Chap. 2.1.

A simple resonant circuit may be represented by the transfer function

2 +2 c~ 2o s 2+ %wos +w2
o 0 (22)

-~t 1 e ;sin(w /A77 t)u(t)

00

where w is the undamped natural frequency and C is the damping ratio for
the circuit (e.g., for an RLC circuit, -o M (LC)- 1 / 2 and V OI(2 Q)

RCOO0/2 - R/(2w L)). The properties of the resonance that are important

are the magnitude of the spectrum at the peak (s Jw) , namely

V V
Ivow )1 - o (23)

680  a
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the resonance frequency w, and the bandwidth Aw at 3 dB below the peak.

These properties are illustraL~d in Fig. 23a. The impulse response of the

circuit is shown in Fig. 23b where it is apparent that the impulse response

is a damped sinusoid with a peak value of about Vo /w
00

For the two resonances shown in Fig. 30 of Chap. 2.1 for •(w),we have

#_1 #_2

magnitude 110 90

bandwidth 0.4 MHz 1 MHz
frequency 2.5 MHz 4.2 MHz

and in the time domain wR have two damped sinusoids superimposed on one

another. The damped sinusoids stimulated by the incident field have the

properties
#1 #2

peak amplitude 276 x 10 565 x 10

damping time constant 0.795 x 10 -6sec 0.318x 10 -6sec

fundamental frequency 2.5 MHz 4.2 MHz

IvOW() [Vlt)

.3 I OdB Vo decay constant: two

-3B AW 2tco0

(a) impulse spectrum (b) impulse response

Fig. 23. Simple resonant-circuit spectrum and impulse response.
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The time ddrivatives of these impulse responses, which approximate the open-

circuit voltage at the antenna terminals, give the EMP responses:

#1 #2

peak amplitude 2.4 volts 8.2 volts

damping time constant 0. 795 X10 sec 0.318x 10 6 sec

fundamental frequency 2.5 MHz 4.2 MHz

Therefore, it appears that the response of the UHF antenna to the EMP

is dom~inated by the aircraft resonances and has a peak open-circuit voltage

of a few volts. This result is consistent with the observations that the

antenna is small and effectively shorted by the transmission-line stub

throughout most of the ENP spectrum. The response calculated is for the

antenna mounted on the nose where the charge density is enhanced. At more

common locations on the fuselage, the charge density is lower by an order

of magnitude. 1
This behavior is fairly typical of small antennas with built-in

lightning protection and coupling networks. The few volts delivered to the

coaxial center conductor are usually well within the tolerance of the

receiver/transmitter terminals; furthermore, this signal is shielded from i
the interior of the aircraft by the coaxial cable shield. Thus EMP coupling

to such antennas is usually not a major problem.

3.2.2.3.3 HF Fixed-Wire Antennas

To estimate the response of the HF fixed-wire antenna to an incident

EMP let us examine Fig. 91 of Chap. 2.1 and the spectrum of a double-

exponential pulse. The asymptotic behavior of a duuble-exponential pulse

is shown in Fig. 24, where it is noted that for frequencies below f I (times

greater than T ), the incident pulse behaves as an impulse of magnitude

Etf whlTo rqece between f1 and f2 (times between Tr and Tf)

the pulse behaves as a step function of magnitude E0. For the double-

exponential EMP, f, 0.6 MHz and f 2=40 MHz, so that the large 5 MHz

resonance in h0 in Fig. 91 of Chap. 2.1 falls in the step-function region

of the EOFl spectrum. Thus we may estimate the antenna response by obtaining
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II
Eorf fl•Eit) = EO(e-t/rf -e-t/rr) u (t)

rEo -rf (t)] f, S _l) =E (.I/ f -/r)( r<< r
EEO .uE,_ Eou/T-I/Tr)

"-[• EOu(t)]• fI I I/(-rrf)ti f
10 fzlA2Frrr)

/ -
log f

t >>Tf Tr << t<ZRTf

Fig. 24. Double-exponential pulse spectrum in log-log scale.

the step-function response of the simple resonant circuit described above.

For the unit-step function excitation, the response is'[* 1 ~ ;~ .1,
V(t) -- 1J + e sin(w /l -o t-Y) (24)

where y - tan-. For high-Q circuits (C << 1) the step-function

response consists of a sinusoid of peak magnitude V /1 2 superimposed on

a step of the same amplitude as illustrated in Fig. 25.

The "resonance" of h in Fig. 91 of Chap. 2.1 at 5.2 MHz has a peak

magnitude of about 1000 m and a bandwidth of about 0.2 MHz. The bandwidth
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L ' v(t)

2 Vo decay constant:;two

It

0 t

Fig. 25. Step-function response of a simple resonant circuit.

and resonance frequency lead to a damping ratio C = 0.02 (Q = 26), and

so the high-Q approximation can be used. Also, 5.2 MHz is in the "step-

function" region of the EMP spectrum; thus the response to a 5 x 10 V/m

step excitation will be used. Since

p 1  V

*- o -1000 when =2Tr x 5.2 x10
0

we have V 1w = 38.5. The peak open-circuit voltage induced at the
0 0

terminals of the fixed-wire antenna by the 50 kV/m incident EMP is then

4 2 =A
V(t) pk 5x 10 x2VV0 w0  3.85 MV (25)

There is also a smaller, broader resonance at 1.7 MHz in Fig. 91 of

Chap. 2.1; this is apparently the airframe first resonance, and the peak

induced voltage at this frequency is about 0.4 MV. Thus the response at

5.2 MHz dominates tle antenna response.

In Fig. 91a of C'iap. 2.1 it is seen that the antenna input impedance

is approximately 6 x10 4ohms at 5.2 MHz. Hence the antenna behaves a's a

current source supplying a short-circuit current V /Zin 3.85 X10 6 Ax

10 = 64A to any load imptedance small compared to 6 xl14ohms. If a

b90

, V.•: ', ..
; •,' . ,,



Mr -40- - - O wPupmiu

- I t

50-ohm matched coaxial cable is used between the antenna and the receiver,

this cable will carry 64A on the center conductor and the braided-wire

shield. As indicated in Fig. 26, the voltage between the center conductor

and the shield would be 3.2 kV, certainly enough to damage the receiver

if the TR switch was not activated by the EMP induced pulse.

S3.2.2.4 Internal Interaction

3.2.2.4.1 Fixed-Wire Cable Crosstalk

A question remains regarding the effect this EMP-induced voltage might

have on other avionics on the same aircraft. Some of the EMP-induced

signal will leak out of the braided wire shield used on typical coaxial

transmission line and excite other nearby cables. A typical leakage
inductance for the 50-ohm RG-213 cable is 0.25 nH/m. The voltage per

meter developed outside the cable by the 64A current inside is I

V' w L'I = 0.52 V/m (26) 1

3.8 MV receiver

20m

64A 50 coox. 5011

3.2 kV
60 kfl adjacent wire

antenna aircraft interior IOV
>4 1

Fig. 26. Voltages and current induced by a 50 kV/m double-exponential

pulse on HF fixed-wire antenna components.
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Electric coupling between the braid shield and the external conductor has

been neglected in this analysis. For the E-4 aircraft, 20 m of this cable

may be required between the antenna and the receiver, so that as much as

10 volts could be developed on other conductors in the same bundle by

leakage out of the antenna feed cable as indicated in Fig. 26. This

assumes no coupler at the antenna terminals; a coupler is usually installed

near the antenna termiaals which, unless it were tuned to w , would attenuate

the EMP-induced signal.

Although 10 volts is not a large transient for the interior of the ¶
aircraft, it is large enough to upset logic circaits unless the circuitsare protected by an additional layer of shielding. Furthermore, because of

uncertainties in the estimates leading to the 10-volt result, a safety

margin of perhaps an order of magnitude is desired.

3.2.2.4.2 Wires Near Aperture
Interaction of the Eb with conductors inside the aircraft by means

of fields penetrating apertures, such as windows, hatches, or doors, is

also of interest. Such interaction is particularly likely in the vicinity

of the cockpit where windows or canopies are required for operator

visibility, and in wheel wells and bomb bays where large doors and poor

ilectromagnetic seals can permit significant penetration.

Let us consider a wire bundle routed near a window as illustrated

in Fig. 27a. The window and wire bundle can be represented as an aperture

and a wire as shown in Fig. 27b. For the wire close to the wall (h/R° =0.1)

and not too close to the edge of the window (Z/R < 2), the data of Figs. 2

and 3 of Chap. 2.2 can be used. The open-circuit voltage induced on the

wire by a surface tangential magnetic field Hsc perpendicular to the wire

is

V fsJwPhamH /(rR ) (27)
oc s 0 mac 0

where f is the small-hole correction factor given in Fig. 3 of Chap. 2.2,

and am is the magnetic polarizability of the aperture. For a round hole
mof diameter 2, the polhrizability of the hole is
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II

" window

'7
s/ ,7/

/

wire bundle

(a) physical problem (b) canonical problem

Fig. 27. Aperture penetration and interior wire interaction.

a Z /6 (28) I

At airframe fundamental resonances, the short-circuit surface mognetic field

H is several times the incident magnetic field at points not too close
Sc

to the extremities of the airframe.

For the EC-135 data of Fig. 32 of Chap. 2.1, the airframe first

resoitance occurs at about 2.5 MHz and the surface field is 20 times the

incident field strength. Because the incident double-exponential EMP

varies as 1/w at 2.5 MHz and the induced open-circuit voltage varies as

w, these frequency dependences cancel and the open-circuit voltage is

directly proportional to the impulse response of the airframe. The impulse

response whose frequency-domain properties are shown in Fig. 32 of Chap. 2.1
6is a damped sinusoid of normalized peak magnitude 25w x 10 at the fundamental

frequency of 2.5 MHz. For a 0.5 m diameter window, a - 0.0208 m3 , and for

a typical wire position, the damped sinusoidal open-circuit voltage on the
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wire has a peak value of about 110 volts. This is a significant voltage; it

illustrates the importance of either treating windows to reduce the

3.2.2.5 Hardening Approaches

On aircraft there appears to be little that can be done to control

the charge and current density induced on the skin by the incident EMI'
(with the possible exception of aircraft with trailing-wire antennas).

Therefore most of the hardening concepts depend on establishing and

controlling the first principal shield at the skin or at some other

natural or deliberate shield surfaces. The pressure hull of the aircraft

may be chosen because it is already a controlled surface and most sensitive

avionics are in the pressurized region. Adding EMP control to the pressure

barrier thus requires less special attention than imposinig EMP requirements

on otherwise uncontrolled skins and bulkheads.

As the above examples have illustrated, the principal offenders inI

EMP interaction are large antennas (or other line conductors that act as

antennas) and large apertures. These devices allow the EMP energy to

penetrate the first principal shield and to interact directly with equip-

ment or indirectly through mutual coupling to other internal wiring. The

topological approach to hardening requires that the apertures in the first

principal shield be closed and that the currents on the penetrating con-

ductors be diverted to the outer surface of the shield.

The apertures may be closed by covering them with metal skin if no

penalty is incurred by doing this. For many apertures (notably the cockpit

windows), however, visibility must be maintained. In such cases, severalI
alternatives are available. A fine mesh that does not appreciably degrade

visibility may be used to break the large aperture into many small apertures,

thereby reducing the total aperture penetration. A conducting coating of
stannous oxide having a surface resistivity of 2 to 5 ohms/square can be
applied to significantly reduce the EMP penetration without seriously

degrading transparency. Finally, one can simply avoid routing cables

serving sensitive circuits near the large apertures. The latter approach

may require somewhat more control over cabling practices than is normally

V ~exercised in aircraft manufacture.J
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Conductors that penetrate the first principal shield are often more

serious compromises of the shield than the large apertures. It is important

in EI4P hardening to trace the system topology and identify all penetrating

conductors, whether they are electrical cables or pipes, tubes, control

cables, etc. Each must be treated in some manner to prevent externally

induced currents from passing through the skin to the interior of the

aircraft. Techniques for treating groundable stationary pipes and tubes

and signal-carrying conductors are suggested in Fig. 9 of Chap. 3.1. An

additional treatment for electrical wiring is to distort the first principal

sil, so that the shield encloses the "external" wiring; that is, to

enclose the external wiring in a conduit or other shield that is topologi-

cally part of the first shield. This approach can be used for wiring in

the wings, bomb bays, and wheel wells where natural shielding afforded by

the airframe is very poor during parts of the mission.

3.2.3 GROUND-BASED SYSTEM

adPermanent ground-based installations such as rocket vehicle launchers

adcommunication facilities are generally characterized by large external

* appendages such as power lines and communication cables, and by facility

shields of various qualities. For the present example, we will use the

rocket vehicle launcher illustrated in Fig. 28. Commerical power is

normally used to operate the system and to perform expendable station-

keeping operations. Communication and monitoring from a remote location

is done through a buried, shielded communication cable. An alternative

communication channel may be a radio system; hence, an external radio

receiving antenna and feed cable may be provided.

The system illustrated in Fig. 28 is considerably simplified; opera-

tional systems often contain many other external elements such as outside

i~j lighting, WWV receivers, local radio communications systems, external power

outlets, intrusion alarm sensors, radiation/EMP monitors, local telephone

cables, etc., as well as plumbing for water, sewage, fuLl, etc. However,

the elements shown are representative of the external interaction elements,

and they will be used to illustrate EMPl interaction with long overhead

conductors, long buried conductors, and "local" antennas and antenna feeds.
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In addi tion, as wilb icssdftr t ilb sumdta h

launch tube lid is imperfect, so that external magnetic fields may penutrate

through the joints between the lid and the launch tube walls. Thus, this

example will also demonstrate the effect of penetration through the

apertures in the shield.

3.2.3.1 System Topology

The first principal shield for the system will be the welded steel

walls of the launch tube and ground equipment compartment. This shield is

identified in Fig. 29 as SOI. Except for the launch tube lid and the

holes for cable entries, the outside envelope of SO, 1 is considered to

be continuous steel plate.

Within SO, there are secondary principal shields that form the

housings for power and signal processing circuits. These secondary shields

are identified as S , in Fig. 29, and are usually metal equipment cabinets.
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Within the launch tube the vehicle skin S is also a secondary prinicpal
1,2

shield that separates the rocket vehicle circuits from the environment of
the equipment room and launch tube.

The pertinent system topology is illustrated in Fig. 30, where the

lft half of the diagram represents the equipment room and the right half

represents the launch tube. The first principal shield on the left side

is compromised by the penetrating cables, while on the right side the

shield is compromised by the leaky lid apertures. The divider between
the left and right sides represents the wall separating the launch tube

from the ground equipment room; this divider is compromised by the umbilical

cable between the support equipment and the vehicle.

grone wal aperture

Iaunbh tube and lid)grudequip, wall) (onhrld

r -ii p rconettion s 301.
/ _ F " -- -• - / ,( s h i e ll d e d ) - , • . j X w a• l l $ )

penetrations "vehicleSi ~~~~(power •)- " • - skin)/

)00c (commc

VLS H4, equipmen sin

(equipMont! vehicle skn envronment"IP I( ee•Ievrnet ",/mall-signa!

cabinet$) I environment

,ti launc tubeL . environment environment

Fig. 29. Identification of Fig. 30. System topology.

shielding surfaces.
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All sensitive circuits and components are presumed to be in the

small-signal regions enclosed by the second principal shields. That is,

all small-signal circuits are housed in the ground support equipment .
cabinets (shield S1 1 or in the vehicle guidance and control compart-

meat(shi ld ,2 Less susceptible circuits (lighting, heating/air

conditioning, power conditioning) may be compatible with the equipment

room environment.

3.2.3.2 External Interaction

Four important external interaction problems that can be identified

on the first principal shield S0 1' of Fig. 30 are (1) the overhead power

lines, (2) the buried communication cable, (3) an on-site antenna and

feed cable, and (4) the external fields exciting the apertures about the

launch tube lid. These example problems will be worked out in this section.

3.2.3.2.1 AC Overhead Power Lines

The elements of the power line problem are illustrated in Fig. 31a.

The exposed elements are a semi-infinite overhead conductor with a vertical

down lead. These elements drive a shielded feeder that leads to the main

distribution panel. At the main distribution panel the power circuitsI
branch out to the various system loads, one of which is the equipment

within the first principal shield. All circuits are assumed to be enclosed

in tight metal conduit, so that negligible additional interaction occurs

between the feeder and the facility shield. Within the main distribution

panel the power conductors leave the conduit and are routed to circuit

breaker terminals. This portion of the conductors has been represented

by an inductance in Fig. 31a; it could also be represented by a segment

of transmission line whose characteristic impedance is larger than that

of the conductors int the conduit.

a. Overhead Line

Fig. 31b illustrates the problem geometry for the determination of

the Norton equivalent source characteristic of the incident EMP and the

exposed conductor. The induced terminal current can be obtained fromI

scattering theovy or approximated using transmission-line theory. In
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(a)(o) (b)

rr

oerWhead line fweder facility # .
f~ oload shield .. ...... ,.

nmain equivalent
distribution circuit

(c) 1  y2

Fig. 31. External coupling and propagation through AC power system.

(a) AC overhead power line circuits; (b) equivalent source

for overhead lines; and (c) source transferred to facility

shield penetration. I

either case, the short-circuit current will depend on the incident EMP

waveform and azimuth and elevation angles of incidence, and the current

and admittance will depend on both the conductor size and height, and soil

conductivity and permittivity.

For this example, consider a power line that extends to infinity (away

from the facility) and is 10 m above soil of conductivity 10-3mho/m. Also

for simplicity, assume that the power lines can be represented by a cingl.

conductor of radius 0.1 m. Then for an exponential pulse E 0te 'with

- 250 ns) incident at an elevation angle of 200 ( - 200) end-on 0),

the line is characteiized by (see Sec. 2.1.2.3.3a)
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c 27Fn(2h/a) - 317 ohms (29)

t T 2h

t 0 /T - sin 4-0.0912 (30)

aT - 0.250 x 10-9mho - sec/m

D(ý,O) - 5.67 (vertical polarization)

The short-circuit current at the terminals is given by (93) of Sec. 2.1.2.3.3a.4

and is plotted in Fig. 32 for E° - 104 V/rn. The source admittance Y(1) is the

inverse of the characteristic impedance Z , i.e., Y() y() - /Z . These

define the Norton equivalent source representing the above-ground power line,

as illustrated in Fig. 31b.

spectrum

•10• °=16-3U/M r n
•r" a 250 no
E=1 04 V/m7 -250 no

waveform 10 =i00V/rn
I106 

H 0 -' \E o"-o
- I I I I I-I I I

o05 t 1.0 0.1 1.0 10 tooo i.~p0.1frequency (MHz)

Fig. 32. Short-circuit current induced in power line by exponential

pulse of incident field.
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b. Low-Voltage Wiring

The Fropagation of the induced current through the feeder, distribu-

tion panel, and essential load conduit is illustrated in Fig. 31c. The

stray inductances in the distribution panel and the other circuits in the

support building (outside the first principal shield) are represented by

a Tee network in Fig. 31c. Generally, the electrical wiring consists of

several conductors in a conduit and thus the transmission lines shown in

Pigs. 31a and 31c are multiconductor transmission lines. As suggested in

Fig. 31c, the transmission-liie problem is solved as a two-conductor line

to obtain the common-mode Norton equivalent source (I ,Y ) at the point
p p

where the conduit penetrates the first principal shield.

e. Service Entrance Conduit

The equivalent source T(I) drives the line end of the service entrance

conduit conductors. For this example, we will consider only the common-mode

currents on these conductors, and assume that the conductors and feeder

conduit form a uniform, lossless transmission line. The Norton equivalent

source 1(2), Y(2 ) at the end of the service entrance conduit entering the

main distribution panel is then

y(2) y (210e-j 2kk

-Y Oe (31)
S C 1 + p(O)e-J2kR,

(2) i(1)e-jk' 1 + p(O) (32) r
S s 1 + p(0)e-j2kZ

where p(O) - (Y2c _ y))/(y(2) + y(l)) y( 2) and £ are, respectively, theC C C C

characteristic admittance and length of the conductors in the service entrance

conduit, and Y(1) is the source admittance of the Norton equivalent source

driving the conduit. Eqs.(31) and (32) above thus transfer the Norton

current source from the line end of the conduit to the main distribution end.

For a feeder conduit 30-m long with a common-mode characteristic

impedance of 25 ohms, p(O) 0.85 and the conduit is a quarter-wavelength
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long at 2.5 MHz. The waveform and spectrum of the short-circuit current

1 2) are shown in Fig. 33.

d. Main Distribution Panel and Loads

The source 1(2) drives the Tee network consisting of Y1 1 Y2, and

in Fig. 31c. We may represent the stray inductance of the incoming and

outgoing wiring at the main distribution panel by lumped inductances Y

and Y in series with the lines. The input admittaonces of non-essential

station-keeping circuits are represented by a shunt admittance Y as I

illustrated in Fig. 31c. The transfer function for the Tee network is then

i(3) •2
s 

(33)
I ((T) J 2 )(Y+Y+Y) + YI(Y+Y)
s S 1 23 12 3

where Y(2) is the source admittance of the Norton equivalent source given in.5

(31) above. Of particular interest here is the early-time effect of the TeeIII network on the transient. To examine this let

-62

-3

162 * ,,

-- 4

H 4

0I
0.3 0.6 0.9 01 1t 0

frequency (MHz)

Fig. 33. Short-circuit current at end of feeder conduit.
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y (2)s Y' Y3 nY' (t < 2 kIc)
( c 3 C( 3 4 )

Y1 W Y2 =- (sQL)-

where n is the number of parallel circuits that make up Y3 (each has length

Z and characteristic admittance Y ), and L is the lumped inductance of the

wiring inside the distribution panel. Then

i(3) 1/2
s s- = 2 (35)

I(2) ns + ( 2 +n)s/sr +1/2

s s s

where T = LY and the inductance in series with the branch circuits hass c
been neglected. This transfer function has poles at

s -(2+n) + 4 +n(
1l,2 2n'r (36)5

For L - I VH, I/Yc - 25 ohms, and the number of station-keeping circuits

n-5, the time constant r - 40 ns. For these nominal values of character-

istic impedance and wiring inductance, the poles occur at

fl " 0.64 MHz, f2 - 4.9 MHz

Although the transfer function may not be valid at frequencies as low as

the pole frequencies, we have nevertheless demonstrated the effect of the

stray inductance in rejecting the high-frequency content of the incoming

transient (frequencies above f 2 are highly attenuated).

For very late times (t >> 2 Z/c), Y1 = Y2 -*- and the n branch circuits
appear to be open circuits (unless a green-wire ground is used), and

(3) (2), (3) (2) (37)

I
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That is, the short-circuit current at the output side of the distribution

panel is the same as that at the input side, but the source admittance has

changed because of the inclusion of tl,,- station-keeping circuits Y 3 '

At intermediate frequencies the natural resonances of the n +1

conduits will produce multiple oscillations superimposed on the oscilla-

tioas shown in.Fig. 33 which were caused by the service entrance conduit.

Beas h rnhcircuits are predominantly reactive in the common mode :
butposessa Qofless than 20, these oscillations are damped out rather

rapidly. (The number of cycles required for a l/e reduction in amplitude

is Q/wr.) For initial estimates. therefore, it will be assumed that

I = I 3 and Y = Y 3
)

P a P.

3.2.3.2.2 Buried CommunicationCal

conductor cable buried at a uniform, shallow depth in the soil. As

illustrated in Fig. 34a, the cable shield is in contact with the soil and

is circumferentially connected to the first principal shield where the

cable enters the facility.

The external interaction problem for the buried cable may be separated

into three parts: (a) determination of the ambient fields in the soil

(Fig. 34a), (b) determination of the total current induced in the cable by

these fields (Fi~g. 34b), and (c) determination of the common-mode internalI
conductor currents from the total current and shield properties (Fig. 34c).

For common installations, the cable can be treated as though it extended

to infinity (away from the facility) and the shield is terminated in a

short circuit at the facility shield. The cable shield may be composedI

of two or more shields; these are shorted together at the facility shield.
The shields are usually continuous cylindrical shields (no apertures); thus,

only diffusion through the shields need be considered.

The total current induced in the buried communication cable shown in

Fig. 34 can be estimated from Figs. 59 and 60 of Sec. 2.1.2.3.3 b.2. ForI

a 10- , b 1 m, and the 50 kV/m exponential pulse (T - 250 ns) incident

at =90', - 0 on the soil, the following parameters are obtained:
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kfacility(b
shield (wall)

Lb Z'zEtdz wl

(C) Z dz I Tdz
-+ Wall

-Q Yddz Yý Ydz C JL
dz

Fig. 34. External coupling and propagation through shielded underground

communication cable. (a) Underground communication cable; (b)

bulk ci- cnt 10.1 cable; and (c) wire current at facility shield

penetratý.oa.

Tb = pub 2= 47r xl101 sec, Te = e0 a =8.85 x109 sec

:1 Tb(4T = .261 3, -(p4 cos 1 (vertical polarization)

1p 1l.33 kA (b lm) (38)

The waveform of the current I(t) is shown in Fig. 59 of See. 2.1.2.3.3 b.2.

Let us now assume that this cable has a single steel shield (v~ 100,

a = 106 xOmo which is 0.5 mm thick and 5 cm in diameter. Then the

diffusion zonstant for the shield is
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d d•d2 37.7 Ps (39)

and the dc resistance per unit length of the cable shield is

-W (2T a crd) 2.12 x 10 -3/m (40)

Thrfoee-t/t prdcstesaersos

Therefore Td >> T and the incident field E0e produces the same response

as an impulse E0 T6(t). The short-circuit current induced in the core wires

at the end of a cable of length Z matched at the opposite end is

1 (0) -I,)z'z/z
scT c

2R' E T D(i,O)k t TrT
dco e d (41)

c s sinh/~sd

for X << 2w cTd - 71 km. Here L' is the external inductance per unit length
d •S

of the cable (see (102) of Sec. 2.1.2.3.3) and Z is the cbaracteristic

impedance of the core/shield transmission line. In the time domain, the

current waveform is shown in Fig. 35a normalized to the coefficient given

by (42) as a function of normalized time t/Td. For our example,

2EoT D(p, )R ' T"-
dc e - 0.0406 A/m (42)

Z L' -~c sd

Thus, a 10-km long cable would have a peak slhort-circuit current of 406 A x
1.85 w 751 A induced on its core wires if Z = 10 £2 and L' 2 PH/m.

For a wide pulse (step function or T >> T the current induced at

~ the end of the cable is

2R' E D(ý,,)
1 (0) -dc 0 /'rT 1 (43)

sc ZL' edCs S sinh /'WF

and the time-domain current waveform is shown in Fig. 35b, which evidently

increases without limit as cable current is drawn from an ever-increasing
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(a) (b)

1.2-
r n(t) L CT

J..jtr LZc -

I !~t Li ýý

00.5 1.0 1.5
t .. ./rd 0 1 2 3 4 5
t/rd

Fig. 35. Short-circuit current induced on core conductor of a buried

shielded cable. (a) Short-pulse response,and (b) wide-pulse

response.

radius in the soil and diffuses through the electrically thin shield. In

practical problems, the finite dimensions of the cable and area of illumina-

tion, the finite pulse width, and the effects of propagation time place an

upper limit on the induced short-circuit current. For most cables and

soils, the impulse response of Fig. 35a is appropriate for high-altitude

EMP excitation.

The Norton equivalent source just inside the facility shield thus

consists of the current I (0) given by (43) and the characteristic admit-sc -l

tance of the core/shield transmission line by Yc W (Zc )"

3.2.3.2.3 Communication Antenna and Feed

The communication antenna and feed cable are illustrated in Fig. 36a.

In this simplified model, the external interaction elements consist of the

antenna and its base or ground plane, and the coaxial cable between the

antenna and the facility shield. In practice, the antenna system may also

contain an antenna coupler (matching network) and preamplifier at the base
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Co)I

facility
shield

)(d) (1) (2)
4-++ 0

"" J

"id Yd

(C) o n ti"+ + + +°o
fb 

OYb 1b

Fig. 36. External coupling and propagation through external antenna and

feeds. (a) Communication antenna and feed; (b) contribution of

antenna element; (c) contribution of antenna base and cable current

and charge; and (d) equivalent source at facility shield penetration.

L of the antenna; these components are not included in the example. 1he

coaxial cable between the antenna and the facility shield is assumed to be

RF coaxial transmisiuioa line with a braided-wire shield. Thus, aperture
penetration through the cable shield will contribute to the externally

induced current in the cable.
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The EMP-induced current in the feed cable will consist of two parts:

that induced in the antenna and propagated through the cable (Fig. 36b),

and that induced through the cable shield along its exposed length between

the antenna and the facility shield (Fig. 36c). For the first part, the

transient response' of the antenna is then used to transfer the antenna

characteristics (Id,Yd) to the penetration point to obtain the Norton

equivalent source (I(M), Y ) driving the internal cable.
a a

For the second part of the problem the current and charge induced in

the finite-length cable must be determined. This will include any current

caused by interaction of the external fields with the antenna base (Ib,Yb)

as well as the distributed current induced by the fields along the cable.

The cable current and charge and the shield transfer characteristics will
(2)

then be used to determine the Norton equivalent source (Ia ,,Ya) at the

penetration point. (It will be assumed that the leakiness of the shield

has a negligible effect on the source admittance Y .) The resultant source
a

(Ia Ya) at the penetration point is then obtained by superposition of the

two sources (Fig. 36d).

a. Communication Antenna

If the antenna is a biconical antenna with a 30' cone half-angle and

0.3 m length, the antenna may be considered an electrically small dipole

and its capacitance will be

27re d
0C= O

Ca n(cot 300) 30.4 pF (44)

The effective height h of the antenna will be approximately d/2 = 0.15 m
e

and the short-circuit current available from the antenna will be

sC h E(s) 4.56x10-sE (s) (45)
d ae

or

Id(t) = ha C - 4.56x 1 -t (46)
d e a dt

and the source admittance is Yd sCa"
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b. Antenna Base

The current induced on the antenna base is the total current oni the

antenna structure less the current on the conical element (Id above).

The total current is approximately

2 iI -7 r rsEB(s) (47)
Lt bo0

where rb is the radius of the metal base plate. The net current to the

base plate is thus

rb - ( 2 rbC - h C )sE i(s) (48)

If r b = 0.6 m, then Ib 5.45 xlO 2 sEi(s), which is about the same as the

current in the antenna element. It turns out that the effect of this

current is insignificanL compared to that of the antenna current, because

the base current flows to the cable shield rather than to the center

conductor.

The Norton equivalent circuit (Fig. 36d) just inside the facility

shield consists of the source Id transferred to the opposite end of the

coaxial cable through

whera -Ide- + ! + p(O)_ (49)
wherea 

di + p(0)e -j2kZ

-'~Yc - SCa
p(0) - Yc Sa

Y + aC

aud the admittance Y is obtained from
a

y -y 1 - n(O)e-j 2 kX (50)
c + P(O)e-k

For the double-exponential EMP waveform, the current waveform I d(t) is
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Ir
I EhC d d e e-(51)

d e a (e - (51)

41
For E 0 5 x10 V/m, T r 2 us and T, - 250 us, this current has a peakSorE 5× zrf

value of 57 A and a very short duration, as illustrated in Fig. 37.

Because the significant current lasts for only about 10 as, it occupies

only about 10 feet of cable (air line). Thus, if the coaxial cable is

over ,0 feet long, the complete waveform is transmitted undistorted.

However, the initial waveform will be followed by "echos" of the initial

pulse as the reflections from the cable ends arrive at later times.

3.2.3.2.4 Summary of Penetration Currents I
The peak cuirrents and times to reach peak are summarized in table 1 I

for the three conductors penetrating the primary shield of the facility.

3.2.3.2.5 Lid Excitation

The aperture penetration problem associated with the launcher lid

is illustrated in Fig. 38. An exact solution of the problem is very

difficult because the apertures are at a discontinuity in the cylindrical
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10 zero nggo~iv4
Croe ~ pOAk000 20 40

time (nAs)

Fig. 37. Short-circuit curreut induced at antenna terminals.
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Table 1. SUMMARY OF CURRENT SOURCES REPRESENTING CONDUCTORS

PENETRATING THE FIRST PRINCIPAL SHIELD

External Peak Short- Time to Source Impedance

Source Circuit-Current Peak Early Late

Power Lines = 15 kA 1 100 ns 25 ohms 300 ohms

Communication C 750 A 6 ps 10 ohms 10 ohms

Cable

Communication < i0ns 50 ohms

Antenna

./1

I bscontact

F 3 A t copln and iner

II

umbilical •. .
cable .- "

S!i i ! base contact

"IFig. 38. Aperture coupling configuration.
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surface. In an operational facility, the geometry is even more complicated

because the lid mikes a sliding contact with the top of the launch tube,

so that the aperture has depth as well as area. In addition, the crack

between the lid and the tube may be partially filled with lubricants and

RFI gasket material. For this example, however, we will assume a simple

circumferential aperture divided into three segments by the lid/tube contact.

The external interaction problem consists of determining the surface

fields (Fig. 39a) and the current density J flowing across the top surface

of a metal cylinder immersed in the soil due to the incident EMP (Fig. 39b).

A secnnd mode of excitation is for longitudinal current to flow from the

lid to the walls of the tube; this current will be driven by the vertical

component of the electric field, whereas the current flowing across the

top is driven by the horizontal component of the magnetic field.

The remainder of the external interaction problem is the calculation

(or estimatica) of the magnetic polarizability of the apertures of Fig. 39c
(see table 15, Sec. 2.1.3.2). It will be assumed that the electric

polarizability of the aperture is negligible in the practical case of a

wide, low-impedance flange contact between the lid and the cylindrical

launch tube.

(a) E) (C) map (O =0)

4ir . ..........

sail

Fig. 39. External coupling to launcher lid apertures. (a) Surface fields,

(b) surface magnetic field at lid, and (c) dipole moments of

slots.
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I

The radial current at the edge of the lid is

r= Jw 2E EA (52)Ir 0

due to the vertical electric field when the elevation angle of incidence

is small. The current across the lid produced by the horizontal magnetic

field Ht is, to the same degree of approximation,

Iz = a(2E i/Zo) (53)

2

where a is the radius of the lid, Z- /p0/so and A - na . The ratio of

these currents is

Ir/I j 7r ka (54)

r z

where k - w/c. Thus, when ka << 1, for which these approximations are

valid, the current I dominates. The surface current density e-citing the
z 2Ei/Z1

lid apertures is predominantly given by 2E /Z
3.2.3.3 Internal Interaction

For the most part, the internal interaction consists of propagation ¶

along conductors; however, there are some special internal interaction

cases that are of interest. The first is the case in which a coupling

between the input and output cables occurs at a cabinet or junction box.

This coupling occurs at high frequencies because of the capacitance

between the input/output cables and the intervening circuit mass. Fig.

40 illustrates this coupling circuit in simplified form. The input

C C2
1 1 out

C. I
Fig. 40. Internal cable segment and capacitive coupling network.
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cable is represented by a transmission line, and the capacitance between

the input cable and the circuits in the cabinet circuits are represented

by Ct . The capacitance between the output cable and the cabinet circuits

is represented by C2, and C3 is the capacitance between the circuits and

ground, or cabinet, chassis.

For illustrative purposes let us assume that C1 a C2 << C3 and that

the small capacitances Cl and C2 appear to be open-circuit terminations

at the ends of the input/output cables for times of interest in the EWf

analysis. Then

out C1C2  2jw ej/c (55)

fin C3  C - Jew2Z/c

where Z is the characteristic impedance of the cable and Z is its length.c

In the time domain

2CIC__•C d

'~u(t) 2 Zc n lin(t - m U/c)]u(t - mi/c) (56)

where m = 2n- .

Note that if the input current I.n has a large derivative, the output

current will be large. Consider, for example, a power lead with the

current of Fig. 33 rising to 15 kA in 0.1 ps. The rate of current rise

is 15 xl010 A/s, and for C = C2 . 10 pF, C 200 pF, and Z - 100 ohms, the

peak output current is 15 A. Hence we have 15 A delivered to an output

conductor that is ostensibly isolated from the power lead.

A second internal interaction phenomenon involves leakage out through

cable shields, propagation along the shields, and leakage back through the

shield to internal conductors. A simple example is illustrated in Fig. 41,

where a larger EMP induced current I flowing on internal conductors induces

currents Isl and Is2 on the cable shields and a voltage V on the internal

conductors of the second cable. This phenomenon is most effective at high

frequencies because the braided-wire shields are leaky at high-frequencies

and the inductance L of grounding conductors allows high-frequency com-

ponents of the shield current Is to flow onto the second cable as I2.
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TL Z¢C Is2 ZocL

Fig. 41. Interference propagated on cable shields.

For a cable shield transfer impedance ZT' -JwL per unit length,

the current Is8 in the shield is approximately

Is -V T I W (57)

at early times (i.e., before reflections from the ends) and for

IZ << L dI/dt. If the second segment of cable is the same as the

first, the early-time voltage induced on the internal conductor of the

second cable will be

Voc(t) c -- 1(t) (58)

For an inductance per unit length L' of 0.2 vH/m and a leakage inductance

per unit length L' of 1 nH/m, the open-circuit voltage impulse inducedIT
in the second cable by a 15 kA-s impulse in the first cable is 11 V-s.

For a cable impedance of about 100 ohms, this induced voltage would corre-

spond to 0.1 A (for a short pulse) compared with 15 A for capacitive

coupling between conductors. Such coupling phenomena as these are

responsible for the apparent permeation of facili•ies by the high-
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frequency responses even though stray series inductance and higher losses

K! in dielectrics and conductors tend to attenuate the high frequencies.
It is also noteworthy that the leakage through t~he shields is signi-.

ficantly smaller than the capacitive coupling between cable ends.

Topologically, the shielded conductors are separated by two layers of

shielded volume.

3.2.4 SATELLITES

Satellites used as observation platforms or communication relay

stations are rather complex vehicles topologically because of their solar

cell arrays and their gossamer nature. Because the stresses on the vehicle

structures in space are minimal and weight is at a ,remium, the satellite

vehicles are often rather flimsy and skeletal in comparison to aircraft

and rocket vehicles. Communication satellities may also contain large

apertures to accommodate gimballed antennas or other adjustable-position

components. These vehicles also often contain sensitive electronic systems

to maintain the proper vehicle altitude and to store, relay, or read out data.

The basic features of a communication satellite are illustrated in

Fig. 42. The main structure of the satellite is a hollow right circular

cylinder. It spins steadily on its axis to maintain orientation stability.

Itc czylindrical surface is covered with solar cells. Two dish antennasJ

are mounted on the cylinder's top end. This end is a movable platform

detached from the rest of the cylinder. It is kept despun from the cylinder

by a motor to achieve antenna aim control. A biconical horn antenna is

mounted at the end of an axial shaft which extends through a circular

aperture beyond the bottom end of the cylinder. Electronic components

necessary for satellite operation are housed in the cylinder's interior.

They are shown in Fig. 42 as "black boxes" connected to a circumferential

cable bundle.
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despun
antenna
platform spun-
solar II section

panels " ,

II

"black box"

cable bundle biconical
fhorn antenna

Fig. 42. Some basic Aeatures of a communication satellite model.

3.2.4.1 EMP Environment for Satellites

Because satellites are exoatmospheric vehicles, their EMP environment
is significantly different from that of the surface and near-surface systems.
The high-altitude EMP is generated in the lower, more dense region of the
atmosphere well below the ionosphere. In order for this wave to reach
satellite altitudes, it must propagate through the ionosphere; in so doing
its characteristics are noticeably altered. For example, because the
ionosphere is a good reflector for frequencies in or below the HF band,
these components of the EMP spectrum incident on a satellite are largely
filtered out by the ionosphere. For frequencies above the HF band, the
electron inertia causes the effective dielectric constant and the electrical
thickness of the ionosphere to vary with frequency, so that this portion of
the EMP spectrum is dispersed by the ionosphere. The EMP waveform incident
on the satellite therefore has a smaller peak field strength and is more
oscillatory than the waveform observed below the ionosphere.
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Perhaps more important than the dispexjed EMP wave incident on the

satellite is the flux of gamma L.id X-radiation produced by the nuclear

detonation. T4-ce there may be little inLervening media between the

weapr, and the :;atellite for a high-altitude btirst directly illuminating

the satellite, there is little attenuation of the radiation piopagating

toward the satellite (except that caused by distance). This flux of

radiation can interact with the satellite structure and components to

cause sysi:em-generated EIMP (SGEMP) and transient radiation effects un

electronics (TREE). These effects are often more severe than the dispersed

EMP itself on satellites. In the following discussion of satellite inter-

action, only the EMP interactiolL is considered.

3.2.4.2 EMP InteractiGLk

The central problem of the satellite-EMP interaction analysis is to

evaluate the voltages and currents induced on the cables by the EMP. One

source of cable voltages and currents arises from the direct excitation

of external wiring and .. ,tennas. The antennas pick up energy from the EM?

and inject it directly inLo the cables. Note tiat Lhe solar panels act

like antenna-. A second source if cable excitation arises from the

Loenetration of the EMP fields through the open apertures on the satellite

skin. These fields then interact with the cables in the satellite's

interior.

The skin of the satellite in Fig. 42 can shield most of the energy

of an impinging EMP trom the satellite's interi(r. However, some EMP

energy can oenetrate through the skin by way of the aatennas and the

apertures. The apertures include the circumferential slot at the rim of

tae antenna platform, the vertical slits at tLe joints of adjacent solar

panels, and the ciccuiar hole for the biconical horn antunna. These
apertures are illustrated in Fig. 43.

Although Lhe shape of the vehicle and its apertures are different

i
Irom those of the rocket vebicle and aircraft, the electromagnetic inter-

action problem is quite similar to those already discussed. Furthermore,
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sl ot

circular hole

Fig. 43. A geometrical model applicable to the calculation of MFl4 penetration

through the apertures on the satellite.

because the aEP problem is only part of the satellite interaction problem

involving SGEMP and TREE considerations, only a simple numerical example will

be worked out below.

When the satellite is illuminated by an incident EMP whose magnetic

field is parallel to the satellite axis, significant magnetic-field penetra-

tion. into the interior can occur via the slots and the hole shown in Fig. 43.
The maximum open-circuit voltage that can be induced between the internal I
conductors and the shield of the circumferential cable bundle shown in

Fig. 42 will be estimated in the following. It will be assumed that all

of the magnetic flux which penetrates the satellite through the slots and

hole also links the cable loop. The electromotive force associated with the

rate of change of the magnetic flux will cause a total current It to flow

in the cable loop; this total current will then induce currents and voltages

on the internal conductors of the cable bundle. The open-circuit voltage is
estimated by treating all the internal conductors as a single conductor and

by ignoring the presence of the "black boxes" shown in Fig. 42.

The system top, Dgy for this elementary problem is shown in Fig. 44.

The first principal shield is the outer skin of the satellite. The penetra-

tions of this shield to be considered in this example calculation are the
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vertical slats

,S,S (satellite skin)

S (cable bundle shield)
112

internal conductors

Fig. 44. Elementary satellite system topology.

vertical slot apertures in the outer skin. The second principal shield is
the shield of the cable bundle. This shield is typically a mylar-aluminum
film, penetration through which occurs via diffusion. An interaction

sequence diagram for this elementary problem is given in Fig. 45. The

following notations are used:

k - length of vertical slots

w = width of vertical slots

n = number of vertical slots

S= resistance of cable loop

"= inductance of c,.ble loop

b - radius of cable loop
r = radius of cable bundle

0

Z' = transfer impedance per unit length of cable shield
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[• EMP Environment

Satellite Skin Currents

Vertical Slot Apertures

C Cable Shields j

Internal Conductor

Open--Circuit

Voltage

Fig. 45. Elementary interaction sequence diagram for satellite

example calculation.

It is shown in table 8 of Sec. 2.1.2.1.2 that the short-circuit magnetic

field H on the outer surface of the satellite skin is approximately

H sc = II (59)

where Hi denotes the incident magnetic field. The magnetic flux (Pm which

penetrates the vertical slot apertures is related to Hsc and to m, the

magnetic polarizability of a single aperture, by an t

3n 3n i
P a m VA • • Hsc 2 k2aP (60)

The permeauility of free space is denoted as usual by po" The magnetic

polarizability of a long slot aperture is given in table 14 of Chap. 2.1 by
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3161
am - 24 Pn(4Z/w) (61)

Therefore, substitution of (61) into (60) yields

m 16 Zn(42/w) (62)

which is an approximate expression for the total flux linking the interior

of the satellite via the vertical slots.

It is assumed that all of the penetrant magnetic flux 1 links the

circumferential cable bundle. This assumption will lead to an overestimate

of the total current induced in the cable loop. The electromotive fcrce

driving the cable loop is then simply -s(, and the current induced in theJ~m'

loop is this emf divided by the loop impedance Rb + sLb. It can be shown

that Eb may be neglected in comparison to sb in the frequency range of

interest (i.e., f Z 30 MHz because of the presence of the ionosphere

between the source region and the satellite). From table 16 of Chap. 2.1,

we have

L = Pob Zn(Sb/ro) (63)

so that the loop current It is

I ~- n7rY,2H i(4t 16b Zn(4Z/w)Zn(8b/ro) (64)

Now the maximum open-circuit voltage V which can be dev~lopedoc

between the shield and the internal conductors of the cable bundle is
found from (117) of Chap. 1.3 and (1) of Chap. 2.4 to be

V - 2nbZ'I (65)
oc Tit

Using (5) of Chap. 2.4 and assuming that the cable bundle shield is electri-

cally thin over the frequency range pf interest, we find that V is

approximately
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"- nn2 H (66)
oc 16 r o d Pn(8b/r0)Pn(4k/w)

in wlich a and d denote the shield conductivity and thickness respectively.

The time dependence of V is thus seen to be identical to that of Hi ;TetmdeedneoVoc II

and the peak value of Voc is given by (66) when H1 is replaced by its peak

value.

For purposes of numerical illustration, let t - 2m, w 0.5 cm, n - 4,
7b = im, r ° 2 cm, a = 3.7X10 mho/m, and d = 0.025 mm. Then the open-

circuit voltage V is givei by

Voc 6.6 x 10-3 [Hi] volts (67)Voc

in which [Hi] denotes the numerical value of Hi. It has already been pointed

out that the dresence of the ionosphere causes the incident EMP to have a

smaller peak value than that which would be observed below the ionosphere.

Thus the peak value of V will be less than that which would occur were
oc

the ionosphere absent; choosing, for example, [Hi] 133, which would

correspond to a peak electric field strength below the ionosphere of

50 kV/m, we find that

IVocpk I < 0.9 volts (68)

3.2.5 ERROR-ANALYSIS EXAMPLES

In this section we present the application of the error-analysis

formulas described in Chap. 1.6 to some of the results obtained in the

foregoing illustrative system analyses.

II• 3.2.5.1 Induced Voltage on Rocket Raceway Cable (cf. Secs. 3.2.1.3.2, 3.2.1.4)

Eqs. (9) and (10) of Sec. 3.2.1.3.2 for the voltage induced per unit

length of raceway cable on a rocket vehicle yield the following approximate

expression for the peak value of this voltage:
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V'pk- L'fIpkw/a (69)

in which w is the raceway perimeter and a is the missile radius. The

quantity w/(21Ta)is a purely geometrical parameter used to estimate the

fraction of the total missile current flowing on the raceway cover.

The root-mean-square (rms) relative errors in each of the quantities

Lj, f[, w/a and Ipk are respectively denoted by

-2 ½ -2

<Nw > '<Xf >
<2 > ~-2 ½7' -w/a I ppkk 2

and from (41), Chap. 1.6, the relative rms error in V > is

given by 
p

< 1(1 4. <)(l2 >)1>)<l2 +<x2 >) (70)
<Lpk L½T f 1 wla I pk

We briefly discuss each of the inpt, ciuauntities in (70).

The transfer inductance per unit length LT represents the aggregate

effect of the bolted and riveted raceway-cover joints. It is very difficult
to calculate both L' itself and the effect of combining thý axial and

T
circumferential polarizabi2ities into a single equivalent LT. Thus, an

optimistic estimate of cXL, >" would be 0.5, or 50%. We use this value~ T

in the calculation of <x2,, >.pk

The frequency f can be accurately calculated for an idealized model

of the rocket vehicle; measured natural-f;:-quenuy data for given vehicle-;

arL, also available. Thus we assign the value 0.05, or 5%, to 2 >

The fraction w/a caa be determined almoa. exaQLly for a given vehicle,

but it is used In (69) to denote the fraction of the total miss4 le current

I7
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which flows in the raceway cover. This current fraction and the geometrical

fraction may not be identical; thus we will use < /> .0.10, or 10%,

for the relative error in w/a.

The peak missile current I klike the frequency fl., can be calculated

quite accurately for an idealized model of the vehicle. Following the

discussion in Sec. 2.1.2.1.1, we assign the value 0.15, or 15%, to x >
pk

It is now a simple matter to evaluate the rel~ative error Jn Vk We

find that

x2 > 54 (71)1
'pk

If the value of Lýwere exact, i.e., if xL, were set equal. to zero,

thn,2. T
thn X~f )ý would be le~ss than 20%, It is apparent that the large relativa
erroinLT' is the dominant contribution to that in V adta

errorin T~, an tha

The open-circuit voltage developed on the internal cable conductor

is approximately givcz by (17) ot Ser. 3.2.1.4. The peak value of V ,(t)

e is approximately

Voc (t) k f cL L' pk a

Tc L' pk

where V1 Is given abova in (69). Using the assumed relative error values
ph

> .0, 0.10
Tc (74)

2 -
<~i 1"> -0.10, \XV, > 0.54

pk
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we obtain

< xV > =56% (75)

for the relative error inVIMLi It is apparent that calculations of relative error in a given quantity

are straightforward when the relative errors in the constit~uentr, of that

quantity are known. What is far more difficult to quantif''y is the error

caused by the use of, say, a low-frequency approximation such as that

used to obtain (12) uf Sec. 3.2.1.3.2, when the nolixtion to the same

problem without the low-frequency approximation is rtv known. It is at

this point where engineering judgement and experience, aa well as aralyses

which are as accurate as possible, must be used to dv3. estimates of

the errors incurred in appro-.-itmate analyses,

3.2.5.2 Aircraft HF Fixed-Wire Antenna Respcn-e (cf. See. 3.2,2.3.3)

The p-eak open-circuit voltage developed at the terminals of an HF

fixed-wire ýnteuna is estimated in Sec. 3.2.2.3.3 to) be

ii Voc (t)k p/k~ 0  ) (76)

i E whch peak value o If incident EWb electric fieldI

=O center frequency of resonant response of effective 'lieight hU

Aw = 3 dD bandwidth of resonance responsr¶

h e(W ) -effective height at frequency w 0

The principal assumptions used in obtaining this result areI

(a) The dominant contribution to the frequency-domain response[4 arises from the resonance in effective height which occurs
near f 5.2 MHz.
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(b) An equivalent step-function response can be used to derive (76)

since the resonance near 5.2 MHz lies in the "step-function"

region of the EMW spectrum (cf. Sec. 3.2.2.3.3, Fig. 24).

I: The relative rms error in the peak voltage V is given by;,,,.oc

2x< >½ [I +<ýE >)(i + >)(1 + <e>) - 1]
iil;'OC pk x he

in which t Aw0 /2wo. We assign example values to the rms relative errors

in the input quantities as follows:

2 > 0.0, 2 > 0.25, <x2 0.50
E pk e

yielding

< v2  > = 0.57 (78)
oc

The short-circuit current I will have peak valuei sc

*1 w pk o

where Z n(W ) is real. Assuming that the relative error in the admittance

l/Zin(( 0 is 25%, we find the relative error in the current Isc pk to be

<x [1 + (0.57)2 1[ + (0.25)2] -

s 0.64 (80)

3.2.5.3 Satellite Cable-Bundle Induced Open-Circuit Voltage (cf. Sec. 3.2.4.2)

The open-circuit voltage developed between the shield and the internal

conductors of the circumferential cable bundle shown ir, Fig. 42, due to

electromagnetic penetrations of the vertical slot apertures in the

id satellite skin, is given in (66) of Sec. 3.2.4.2.H
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All quantities in (66) can presumably be determined exactly. The errors

associated with that result arise, therefore, entirely from the modeling

concept and the approximations used in its derivation. The principal

assumptions used are that

(a) The short-circuit magnetic field on the outer surface of the

satellite can be approximated by the incident magnetic field.

(b) The aperture penetrations can be treated as if the apertures

were located inan infinite ground plane, rather than in the

surface of a cylinder of finite length.

(c) All the penetrant flux links the cable loop.

The first assumption is valid for a long cylin'er whose length greatly

exceeds its aiameter. The satellite is modeled as a cylinder whose '.ength

and diameter are roughly equal; thus some error iE introduced by assumption

(a). This assumption leads to an underestimate of the true surface current

density; the error could be as large as a factor of two.

Assumption (b) introduces eri.or because the slots extend almost the

entire length of the satellite. The curvature effect is probably not an

important source of error, by virtue of the results in Sec. 2.3.1.1.1.

However, the fact that the slots are comparable in length to that of the

cylinder tends to yield a low estimate of the penetrant flux. This may

be partly compensated by assumption (c), which would overestimate the

flux linkages of the cable bundle. It is suggested that an error of ± 5 dB

be associated with assumptions (b) and (c). Thus V as given in (66)-]occ

probably contains a systematic error of a factor of roughly 1.5 (i.e., Voc

as given in (66) is too low by a factor of 1.5) and an undetermined error

of plus-or-minus a factor of 2.

729/730
I.i

I !



-
MwWa�. a

'
6 -.-

- ----.- - - - -C - - - - - - - - - . - -.-.-

.SU�'�LEMENm4RY

I.

C.

4* V

�*6�

U

4..

* I

* i.:....

I.... I- C - F FI

* I
Cl

* I
I

* 
6

p

I

K IN�ORMATBON
C S

- -Ci A

5 4

4
S ----.. --

_____________________ 
.. *�-�--.-----#-- -*v-----*** ----. - -- *



DEPARTMENT OF THE AIR FORCE
AIR FORCE WEAPONS LABORATORY (AFSC)

KIRTLAND AIR FORCE BASE, NM 87117

" 1111•. TO

ATTNOFA: NTAT (Robert Torres,4-9758)

"suIEcT: Request for EMP Document

TO: BMO/MGEM
Norton AFB, CA 92409

1. The request for AFWL-TR-80-402, "EMP Interaction 2-1.." should be

" ~addressed to:

Defense Technical Information Center
ATTN: DTIC-DDR ICameron Station •
Alexandria, Virginia 22314

2. AFWL/NTAT no longer distributes AFWL-TR-80-402, "EMP Interaction 2-1..".

It is now handled by DTIC.

ýJAMES A. KEE, MJor, USAF
Chief, Technology Branch

§]

11

J!



1st Endorsement 22 Cct 84

To: Defense Technical Information Center
Attn: DTIC-DDR

1. We request that the report number on *EMP Interaction 2-1 be changed from
AFWL-TI-80-402 to BMO/TR-84-34. Also add OPR BMO/MGEM, Norton AFB, CA 92409
to block 16. Also please forward BMO/MGEM 2 copies as soon as possible.

. ject Offiier t headquarters is Lt Keith McBride, AV 876-7651.

Chief, Hard Mobile Division

I "I
!a

-F



UNCLASSI FIED
SECURP's'v CLASVIICATION OF TH'S PAGE (Whon Data Entered) ___________________

REPORT DOCUMENTATION PAGE -READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. EPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

4. TITLE 'and Subillie) 4. TYPE or REPORT a PERIOD COVERED
D'IP INTERACTION: PRINCIPLES, TECHNIQUES AND FnlRpr
REFERENCE DATA
(A COMPLEAT CONCATENATION OF TECHNOLOGY FRIOM THE G. PERFORMING ORG. REPORT NUMBER

EMP INTERACTION NOTES) EMP INTERACTION 2-1 DIC-EH-1 289
7. AUTmOk~s) S. CONTRACT OR GRANT NUMUER(s)

K.S.H. Lee, Editor F90 7--14

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Dikewood Industries, Inc.
'1009 Bradbury Drive, S. E. ARE aWOIC UNITNUMBER

Albuquerque, New Mexico 87106
I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Weapons Laboratory (NTMT) December 1480
Kirtland AFB, New Mexico 8711743 US OPAE

14. MONITORING AGENCY NAME a ADDRNE5SeiI different froai Controliing Office) 1S. SECURITY CLASS. (of thids report)

Unclassified

ItoDECVý A.S~i IC ATION/ DOWN GRADING

SCmEDuLkL

I.DISTRIBUTiON STATEMENT (of thisl Report)

Approved, for public release; distribution unlimited.

17. DISTRIBUTION STATLIAENT (of Cho abstract m~terod In Block 20. It different from Report)

to. SUPPLEMENTARY NOTES

K EY *ORDS (Continue on roersi'e side it nacpsaewy and Iidtmnddy by block number)

Aerospace System Ground Based Systems
Aircraft InteractionApplcatin Misil
ýouoling Satellites

-. is divided into three parts. The first part, Principles and
*e~ ju ý, concerns general concepts anid calculational procedures from electro-

,49rE-ic theory relevant to EMP interaction. This contains a discussion of the
~ :~~c~-t.f electromagnetic topology which is used to divide complex systems into
3~t-,!-at natural smaller parts in an ordered way. This concept is fundamental
-o o'-oganization and understanding of this work and is expected to lead to .

A' r -nsights and computational techniques p-8]. Of course, there are many

7, .473UNCLASSIFIED
SECURITY CLASS;FICATION OF' IHIS PAGE 'When ro~e Enre,red

;Wa
a~~ q 10- ff


